首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.  相似文献   

2.
We report on a new surface modification method for grafting a "dynamic" property for on-demand activation of the click reaction. Our approach utilizes the acetylene group masked with dicobalt hexacarbonyl, Co(2)(CO)(6), which is not reactive toward the click reaction. Electrochemical treatment reveals the acetylene group on the selected region, which is then used as a chemical handle for surface functionalization via the click reaction with an azide-containing molecule. Electrochemical and chemical conversions on the surface were verified by cyclic voltammetry, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. We have demonstrated immobilization of an azide-modified RGD peptide and promotion of cell adhesion/migration to the region of electrochemical induction.  相似文献   

3.
The manufacturing methods of cross-linked polyethylene foams are classified into two categories based on a type of cross-linking. One is chemical cross-linking by using peroxide as a cross-linking agent. The other method is cross-linking by irradiation. As for chemical cross-linking, a fairly thick foam sheet can be produced, and a comparatively high degree of cross-linking can be achieved. This means chemical cross-linking excels in thermo-forming but, due to a rough surface, the product is lacking in adhesive property and printability. We studied how to improve the surface condition of foam sheet without damaging the features proceeding from chemical cross-linking. As a result, it has been revealed that at the pre-stage of foaming, and by irradiating the surface at low voltage, the resultant foamed sheet with smooth surfaces and excelling in mechanical properties can be produced.  相似文献   

4.
We present the first study of mixed alkanethiolate SAMs on ultrasmooth gold surfaces. By eliminating surface roughness, it became possible, for the first time, to investigate wetting properties as a function of surface chemical composition. In three different surface compositions, it was found that contact-angle hysteresis apparently vanished. This suggests that surface chemical heterogeneity does not contribute to contact-angle hysteresis in mixed SAMs on ultrasmooth gold surfaces.  相似文献   

5.
We analyze the electronic structure of molecules which may exist in gas phase of chemical vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus on the chemical bonds between Ge, Sb, and Te atoms. We find that, from the viewpoint of the electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon molecules. We also study the correlation between the bond order which is defined based on the electronic stress tensor, and energy‐related quantities. We find that the correlation with the bond dissociation energy is not so strong while one with the force constant is very strong. We interpret these results in terms of the energy density on the “Lagrange surface,” which is considered to define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor analysis. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
We developed a method for the in situ synthesis of an oligoamide coating on gold. The resultant surface chemical composition, wettability, and chemical nature were comparable to aromatic polyamide films used as reverse osmosis membranes. Hence, the oligoamide wafer may be used in adsorption/fouling studies as a surface mimetic of reverse osmosis membranes.  相似文献   

7.
We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC < CSAC . This implies that the chemical potential that the surfactant needs to adsorb is higher than its maximum chemical potential, and hence, the surfactant will not adsorb. One of the main goals of our model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.  相似文献   

8.
Summary The processing of synthetic material by injection molding machines and extruders produce wear on metal surfaces being in contact with the synthetic material. The corrosion in the melting areas of such machines depends on the chemical and morphological properties of the steel surface. The processing generates chemical changes which can be monitored by means of surface analysis methods. We examined different steels — containing Cr, Mo and V — which were corroded by various melts of synthetic materials. AES, ESCA and SIMS measurements show that some components especially chromium, play a key role for the corrosion process. Corrosion at the surface causes changes of the chemical composition along varying depths (100 – 300 Å). The knowledge of the correlation between chemical changes and surface properties will be helpful for choosing adequate alloys for synthetic material processing machines.  相似文献   

9.
The chemical potential of a surfactant in solution can be calculated from the Gibbs adsorption equation when the surface excess of the surfactant and the surface tension of the solution as a function of surfactant concentration are known. We have investigated a solution of the nonionic surfactant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the polar solvent 3-hydroxypropionitrile at concentrations below and above the critical micelle concentration (cmc). Neutral impact collision ion scattering spectroscopy was applied for the direct measurement of the surface excess of POPC as a function of concentration. The Gibbs adsorption equation was applied in conjunction with surface tension measurements to evaluate the chemical potential and the activity coefficients of POPC, respectively. We find that the solution shows ideal behavior up to the cmc and that the chemical potential remains constant at concentrations larger than the cmc.  相似文献   

10.
We discuss the use of tunneling electron current to control and catalyze chemical reactions. Assuming the separation of time scales for electronic and nuclear dynamics we employ Langevin equation for a reaction coordinate. The Langevin equation contains nonconservative current-induced forces and gives nonequilibrium, effective potential energy surface for current-carrying molecular systems. The current-induced forces are computed via Keldysh nonequilibrium Green's functions. Once a nonequilibrium, current-depended potential energy surface is defined, the chemical reaction is modeled as an escape of a Brownian particle from the potential well. We demonstrate that the barrier between the reactant and the product states can be controlled by the bias voltage. When the molecule is asymmetrically coupled to the electrodes, the reaction can be catalyzed or stopped depending on the polarity of the tunneling current.  相似文献   

11.
Ionic liquids (ILs) form nonfluidic layers at the solid-liquid interface. The properties of the IL interfacial layer play important roles in IL-based applications. Since the liquid-phase IL directly contacts and interacts with the IL interfacial layer rather than the underneath substrate, the surface properties of the interfacial layer could influence how the IL behaves on a solid surface. We used scanning probe microscopy (SPM) and force spectroscopy to investigate how chemical patterns with different dipoles reacted with ionic liquids. We find that even without direct contact on chemical patterns, the IL can form an adsorbate layer on chemical patterns via vapor-phase condensation. The dipole of the chemical pattern can direct the adsorption and assembly of the IL adsorbate. The surface properties of the IL adsorbate layer depend on the dipole of the underneath chemical patterns. Our results indicate that the interfacial IL layer may exist before the IL contacts a solid surface. The charge and dipole of the substrate can influence the structures and properties of the IL interfacial layer. Characterization and measurements of the IL interfacial properties must be conducted under the pretext that the charge/dipole of the substrate is known.  相似文献   

12.
We present a new method for creating surface chemical patterns where three chemistries can be periodically arranged at alternate positions on a single substrate without the use of top‐down approaches. High‐resolution chemical imaging by time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), with nanometer spatial resolution, is used to prove the success of the patterning and subsequent chemical modification steps. We use a combination of colloidal self‐assembly, plasma etching, self‐assembled monolayers (SAMs) and physical vapour deposition (PVD). The method utilizes a double colloid assembly process in which a first layer of close‐packed colloids is created, followed by plasma etching, coating with gold and deposition of a first SAM layer. A second particle layer is deposited on top of the first layer masking the interstitial spaces containing the first SAM. A second gold layer is deposited followed by a second SAM. After particle removal the surface consists of the pattern containing two different SAMs and a SiO2 layer that can be readily functionalized with silanes. The possibility in the replacement of the two different thiols is investigated by X‐ray photoelectron spectroscopy (XPS) and it was found that no replacement is taking place. ToF‐SIMS imaging is used to show the periodicity of the chemical patterns by tracking unique fragment ions from the different surface regions. The patterning method is adaptable to create smaller or larger chemical patterns by appropriate choice of particle sizes. The patterns are useful for immobilizing biomolecules for cell studies or as multiplexed biosensors.  相似文献   

13.
Detailed mapping of surface chemistry with nanometer resolution has application throughout the physical and life sciences. The atomic force microscope (AFM) has provided a tool that, when using functionalised probes, is capable of providing chemical information with this level of spatial resolution. Here, we describe the technique of chemical force microscopy (CFM) and demonstrate the sensitivity of the technique using chemical force titrations against pH. We describe in detail the specific application of mapping the surface charge on natural hydroxyapatite from skeletal tissue and show that this new information leads to a better understanding of the binding of matrix proteins to the mineral surface.  相似文献   

14.
We propose a barrierless mechanism for describing the oxidation of Al(111) in which oxygen atoms located on the outer surface extract aluminum atoms of the surface layers through local cooperation of other pre-adsorbed oxygen atoms. We show the details of this complex chemical process that kinetically competes with the non-destructive formation of an oxygen monolayer onto the Al surface, thus elucidating the initial aluminum oxidation regime. We demonstrate that further stripping of the complete surface Al layer is consistent with both (i) the formation of a defective alumina structure and (ii) an oxide capping layer preventing further oxidation at low temperature.  相似文献   

15.
16.
Controlling the outgrowth of neurites is important for enhancing the repair of injured nerves and understanding the development of nervous systems. Herein we report a simple strategy for enhancing the outgrowth of neurites through a unique integration of topographical guidance and a chemical cue. We use electrospray to easily functionalize the surface of a substrate with microparticles of natural fatty acids at a controllable density. Through a synergistic effect from the surface roughness arising from the microparticles and the chemical cue offered by the fatty acids, the outgrowth of neurites from PC12 cells is greatly enhanced. We also functionalize the surfaces of uniaxially aligned, electrospun microfibers with the microparticles and further demonstrate that the substrates can guide and enhance directional outgrowth of neurites from both PC12 multicellular spheroids and chick embryonic dorsal root ganglia bodies.  相似文献   

17.
Lowering the activation energy of a chemical reaction is an essential part in controlling chemical reactions. By attaching a single electron, a barrierless path for the cistrans isomerization of maleonitrile on the anionic surface is formed. The anionic activation can be applied in both reaction directions, yielding the desired isomer. We identify the microscopic mechanism that leads to the formation of the barrierless route for the electron‐induced isomerization. The generalization to other chemical reactions is discussed.  相似文献   

18.
In this paper we briefly review some chemical trends in structural and electronic properties of monolayers of group IV to group VII adatoms adsorbed on (001) surfaces of homopolar semiconductors. Particular emphasis is put on adsorption of Si, As, Se and Cl at the Si (001) surface. We discuss results from our local density Green function calculations for semi-infinite adsorption systems. The calculated optimal structures can be interpreted in a simple picture of the surface chemical bond and they are in excellent agreement with experimental data where they are available. The calculated electronic structure agrees very good with ARPES data for those systems for which well-ordered monolayer adsorption on the substrate surface has been observed experimentally.  相似文献   

19.
纳米KH颗粒的热稳定性及其化学反应活性   总被引:2,自引:0,他引:2  
考察了纳米尺寸的KH颗粒在不同温度热处理后比表面积的变化及其与化学反应活性之间的关系.纳米KH热处理后,比表面积随着热处理温度升高而减小,但单位表面的化学反应活性却增大.表明热处理改变了KH表面的状态,说明大的比表面积是构成纳米KH高活性的一个主要原因,而具有高表面能的表面也是高活性的一个重要因素.纳米KH具有使苯乙烯快速聚合的催化作用.  相似文献   

20.
Dendrimers are three dimensional nanosized synthetic molecules that have internal cavities and numerous surface groups. In recent times they have received increased attention in sensing applications. For dendrimers to be used as sensors, they most commonly require functionalization at their surface. This is because the surface is generally the first point of contact between the dendrimer and the outside world, hence surface functionalization serves to selectively home in on the target analyte. Further, sensor signals may be transmitted through surface functionalities e.g. fluorochromic molecules. It is therefore important to document surface functionalization approaches. Dendrimers with amine surface groups have the advantage of being able to be conjugated to other molecules via an amide linkage, which is one of the most fundamental and widespread chemical bonds in nature. In this paper we demonstrate the properties of dendrimers that make them so applicable to sensing. We review several methods for functionalizing dendrimers via an amide linkage, as well as present a review of surface functionalized polyamidoamine, polyamine, and polypeptide dendrimers that have been employed for biological, chemical and molecular sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号