首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Cavitation for incompressible anisotropic nonlinearly elastic spheres   总被引:4,自引:0,他引:4  
In this paper, the effect ofmaterial anisotropy on void nucleation and growth inincompressible nonlinearly elastic solids is examined. A bifurcation problem is considered for a solid sphere composed of an incompressible homogeneous nonlinearly elastic material which is transversely isotropic about the radial direction. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the undeformed configuration at sufficiently large loads. Closed form analytic solutions are obtained for a specific material model, which may be viewed as a generalization of the classic neo-Hookean model to anisotropic materials. In contrast to the situation for a neo-Hookean sphere, bifurcation here may occur locally either to the right (supercritical) or to the left (subcritical), depending on the degree of anisotropy. In the latter case, the cavity has finite radius on first appearance. Such a discontinuous change in stable equilibrium configurations is reminiscent of the snap-through buckling phenomenon of structural mechanics. Such dramatic cavitational instabilities were previously encountered by Antman and Negrón-Marrero [3] for anisotropiccompressible solids and by Horgan and Pence [17] forcomposite incompressible spheres.  相似文献   

2.
A basic elasticity solution applicable to an important class of internal stress problems related, for example, to fiber-matrix composites and spalling of cylindrical coatings is obtained. The basic problem that has been solved is that of the singular stress-displacement field resulting from the introduction of a Somigliana ring dislocation in an isotropic linear elastic solid. The Burgers vector of this dislocation has two components, one being normal to the plane of the circular ring dislocation (Volterra type) and the other being in the radial direction of the ring dislocation everywhere (Somigliana type). The analytical solution, in terms of complete elliptic integrals of the first, second and third kinds, is obtained using the Love stress function and Fourier transform. The results are verified numerically and by examining various limiting cases, including the straight edge dislocation as the radius of the dislocation loop tends to infinity, the orthogonal pair of dipoles as the radius tends to zero, and the Lamé solution of a cylindrical bar and a cylindrical hole in an infinite medium as the axial location of the dislocation tends to minus infinity. The resulting analytical solution is considered as a step towards evaluating both the extended stress field around and interactions among various three-dimensional defects such as cylindrical cracks, fiber-tips and fiber-matrix debonding.  相似文献   

3.
A theory for the lateral spreading of a beam of nonlinear surface acoustic waves across the surface of an arbitrary, homogeneous, elastic half-space is developed. The resulting evolution equation generalizes that obtained for uni-directional waves by replacing an ordinary derivative by a diffusion operator of Schrödinger type. The coefficients arising in the evolution equation are related to partial derivatives of the dispersion relation for linearized surface waves on the half space. Details are given for isotropic materials and for two special cases of beams travelling along axes of high elastic symmetry.  相似文献   

4.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

5.
Well-posedness results for the state-based peridynamic nonlocal continuum model of solid mechanics are established with the help of a nonlocal vector calculus. The peridynamic strain energy density for an elastic constitutively linear anisotropic heterogeneous solid is expressed in terms of the field operators of that calculus, after which a variational principle for the equilibrium state is defined. The peridynamic Navier equilibrium equation is then derived as the first-order necessary conditions and are shown to reduce, for the case of homogeneous materials, to the classical Navier equation as the extent of nonlocal interactions vanishes. Then, for certain peridynamic constitutive relations, the peridynamic energy space is shown to be equivalent to the space of square-integrable functions; this result leads to well-posedness results for volume-constrained problems of both the Dirichlet and Neumann types. Using standard results, well-posedness is also established for the time-dependent peridynamic equation of motion.  相似文献   

6.
Body conforming orthogonal grids were generated using a fast hyperbolic method for aerofoils, and were used to solve the Navier–Stokes equation in the generalized orthogonal system for the first time for time accurate simulation of incompressible flow. For grid generation, the Beltrami equation and the definition equation for the orthogonality are solved using a finite difference method. The grids generated around aerofoils by this method have better orthogonality than the results published by earlier investigators. The Navier–Stokes equation at Reynolds numbers of 3000 and 35 000 for NACA 0012 and NACA 0015 respectively, have been solved as an application. The obtained results match quite well with the corresponding experimental results. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
An iterative adaptive equation multigrid solver for solving the implicit Navier–Stokes equations simultaneously with tri-tree grid generation is developed. The tri-tree grid generator builds a hierarchical grid structur e which is mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the Navier–Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a tolerated solution is reached. The iterative multigrid equation solver is preconditioned by incomplete LU factorization with coupled node fill-in. The non-linear Navier–Stokes equations are linearized by both the Newton method and grid adaption. The efficiency and behaviour of the present adaptive method are compared with those of the previously developed iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.  相似文献   

8.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Summary The Hansen's vector wave functions have been modified so it could apply directly for the solution of general exterior boundary value problems in compressible plasma for a spherical geometry. The vector wave functionL has been included to represent an acoustic wave and the three angular orthogonal functions have been defined using complex Fourier series in the azymuthal direction. Using this modified method of vector wave functions, the exterior spherical boundary value problem in compressible isotropic plasma has been solved. The boundary conditions prescribed over the surface of the sphere have been the tangential electric field (or the tangential magnetic field) and the radial component of the velocity vector (or the pressure). From those four basic boundary value problems the coefficients have been derived and several particular cases has been discussed.The research reported in this paper was supported in part by the National Science Foundation, U.S.A.  相似文献   

10.
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the inner zone, the Navier–Stokes equations are solved using a diagonal form of an alternating‐direction implicit (ADI) approximate factorisation procedure. In the outer zone, the unsteady full‐potential equation (FPE) is solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic‐based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady flows in non‐vector processing machines. Applications of the method are presented for a F‐5 wing in steady and unsteady transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
For any simple body we prove that there is an infinite number of mathematical functions which can be added to the response functional for the heat flux vector without affecting the balance laws, the entropy inequality, and the boundary conditions on the normal heat flux. The presence of this indetermination cannot be detected by usual physical experiments, namely by experiments in which cuts of the body are not taken into account. The maximal class of this indetermination is fully characterized in the thermoelastic case.This work has been performed within the activity sphere of the Consiglio Nazionale delle Ricerche, Group no 3, in the academic year 1988/9.  相似文献   

12.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Existing solutions to boundary value problems arising from an elastic sphere subjected to a body force have been primarily restricted to axisymmetric, conservative loading. In this paper, a method for solving the displacement equations governing the static equilibrium of an elastic sphere subjected to an arbitrary body force and surface displacement is presented. The solutions are obtained in terms of three vector spherical harmonics and expressions for the displacement and stress fields are presented. Additionally, a short discussion indicating extension of these solutions to dynamic problems is included.This research was supported in part by an Organized Research Grant, Southwest Texas State University, 1979.  相似文献   

14.
The purpose of this research is to further investigate the effects of material inhomogeneity and the combined effects of material inhomogeneity and anisotropy on the decay of Saint-Venant end effects. Saint-Venant decay rates for self-equilibrated edge loads in symmetric sandwich structures are examined in the context of anti-plane shear for linear anisotropic elasticity. The problem is governed by a second-order, linear, elliptic, partial differential equation with discontinuous coefficients. The most general anisotropy consistent with a state of anti-plane shear is considered, as well as a variety of boundary conditions. Anti-plane or longitudinal shear deformations are one of the simplest classes of deformations in solid mechanics. The resulting deformations are completely characterized by a single out-of-plane displacement which depends only on the in-plane coordinates. They can be thought of as complementary deformations to those of plane elasticity. While these deformations have received little attention compared with the plane problems of linear elasticity, they have recently been investigated for anisotropic and inhomogeneous linear elasticity. In the context of linear elasticity, Saint-Venant's principle is used to show that self-equilibrated loads generate local stress effects that quickly decay away from the loaded end of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self-equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have zero resultant force and moment. When Saint-Venant's principle is valid, pointwise boundary conditions can be replaced by more tractable resultant conditions. It is shown in the present study that material inhomogeneity significantly affects the practical application of Saint-Venant's principle to sandwich structures.  相似文献   

15.
A flow past a heterogeneous porous sphere is investigated by using the perturbation theory. The flow through the sphere is divided into two zones, which are fully saturated with the viscous fluid, and the flow in these zones is governed by the Brinkman equation. The space outside the sphere, where a clear fluid flows, is also divided into two zones: the Navier–Stokes zone and the Oseen flow zone. The solutions on the interface inside the sphere are matched with the condition proposed by Merrikh and Mohammad. The stream function in the Navier–Stokes zone is matched with that on the sphere surface by the condition proposed by Ochoa-Tapia and Whitaker. It is found that the drag on the spherical shell decreases as the permeability toward the sphere boundary increases.  相似文献   

16.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we present a numerical scheme for solving 2‐phase or free‐surface flows. Here, the interface/free surface is modeled using the level‐set formulation, and the underlying mesh is adapted at each iteration of the flow solver. This adaptation allows us to obtain a precise approximation for the interface/free‐surface location. In addition, it enables us to solve the time‐discretized fluid equation only in the fluid domain in the case of free‐surface problems. Fluids here are considered incompressible. Therefore, their motion is described by the incompressible Navier‐Stokes equation, which is temporally discretized using the method of characteristics and is solved at each time iteration by a first‐order Lagrange‐Galerkin method. The level‐set function representing the interface/free surface satisfies an advection equation that is also solved using the method of characteristics. The algorithm is completed by some intermediate steps like the construction of a convenient initial level‐set function (redistancing) as well as the construction of a convenient flow for the level‐set advection equation. Numerical results are presented for both bifluid and free‐surface problems.  相似文献   

18.
The incompressible, viscous flow over two-dimensional elliptic airfoils oscillating in pitch at large angles of attack, such that flow separation occurs, has been simulated numerically for a Reynolds number of 3000. A vortex method is used to solve the two-dimensional Navier–Stokes equations in vorticity/stream-function form using a time-marching approach. Using an operator-splitting method the convection and diffusion equations are solved sequentially at each time step. The convection equation is solved using a vortex-in-cell method, and the diffusion equation using a second-order ADI finite-difference scheme. Elliptic profiles are obtained by mapping a circle in a computational domain into the physical domain using a Joukowski transformation. The effects of several parameters on the flow field are considered, such as: frequency of oscillation, mean angle of attack, location of pitch-axis and the thickness ratio of the ellipse. The results obtained are shown to compare favourably with available experimental results.  相似文献   

19.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

20.
The state space formalism for piezothermoelasticity [Tarn, J.Q., 2002c. A state space formalism for piezothermoelasticity. International Journal of Solids and Structures 39, 5173–5184.] is refined by introducing the generalized displacement vector and generalized stress vectors as the fundamental variables in which appropriate electrical variables are included. The basic equations of piezoelectricity with temperature change are formulated neatly into a state equation and an output equation in terms of the generalized displacement vector and generalized stress vectors. The formalism bears a remarkable resemblance to its elastic counterpart. Various problems of piezothermoelasticity can be solved by simple extension of the corresponding solutions of anisotropic elasticity. For illustration, some fundamental problems are studied within the context and exact solutions are obtained in a systematic and self-contained manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号