首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The synthesis of [Ir2Rh2(CO)12] ( 1 ) by the literature method gives a mixture 1 /[IrRh3(CO)12] which cannot be separated using chromatography. The reaction of [Ir(CO)4]? with 1 mol-equiv. of [Rh(CO)2(THF)2]+ in THF gives pure 1 in 61% yield. Crystals of 1 are highly disordered, unlike those of its derivative [Ir2Rh2(CO)52-CO)3(norbornadiene)2] which were analysed using X-ray diffraction. The ground-state geometry of 1 in solution has three edge-bridging CO's on the basal IrRh2 face of the metal tetrahedron. Time averaging of CO's takes place above 230 K. The CO site exchange of lowest activation energy is due to one synchronous change of basal face, as shown by 2D- and VT-13C-NMR. Substitution of CO by X? in 1 takes place at a Rh-atom giving [Ir2Rh2(CO)82-CO)3X]? (X = Br, I). Substitution by bidentate ligands gives [Ir2Rh2(CO)72-CO)34-L)] (L = norbornadiene, cycloocta-1,5-diene) where the ligand L is chelating a Rh-atom of the basal IrRh2 face. Carbonyl substitution by tridentate ligands gives [Ir2Rh2(CO)62-CO)33-L)] (L = 1,3,5-trithiane, tripod) with L capping the triangular basal face of the metal tetrahedron. Carbonyl scrambling is also observed in these substituted derivatives of 1 and is mainly due to the rotation of three terminal CO's about a local C3 axis on the apical Ir-atom.  相似文献   

4.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

5.
Treatment of trans-[PtCl(2)(PPh(2 - n)(C(6)F(5))(n + 1))(2)](n = 0 or 1) with Pb(SC(6)HF(4)-4)(2) yields a mixture of monometallic cis/trans [Pt(SC(6)HF(4)-4)(2)(PPh(2 - n)(C(6)F(5))(n + 1))(2)], thiolate-bridged bimetallic cis/trans [Pt(2)(mu-SC(6)HF(4)-4)(2)(SC(6)HF(4)-4)(2)(PPh(2 - n)(C(6)F(5))(n + 1))(2)] and [Pt(SC(6)HF(4)-4)(2)(1,2-C(6)F(4)(SC(6)HF(4)-4)(PPh(2 - n)(C(6)F(5))(n))].  相似文献   

6.
Reactions of LiNPPh3 with the Cyclooctatetraenide Complexes [Ln(C8H8)Cl(THF)2]2 of Cerium and Samarium. Crystal Structures of [LiNPPh3]6, [Ln(C8H8)Li3Cl2(NPPh3)2(THF)3] (Ln = Ce, Sm) and [Li(THF)4][Sm(C8H8)2] LiNPPh3 reacts with the cyclooctatetraenide complexes [Ln(C8H8)Cl(THF)2]2 of cerium and samarium in tetrahydrofuran solution forming the phosphorane iminato complexes [Ln(C8H8)Li3Cl2(NPPh3)2(THF)3]. According to crystal structure analyses these complexes show heterocubane structures under participation of the lanthanoid metal atom, of the three Li atoms as well as of the two Cl und the two N atoms of the NPPh3 groups. The crystal structure of LiNPPh3 shows hexameric molecules with a Li6N6 polyhedron which is peripherally shielded by the phenyl groups. The structure of [Li(THF)4][Sm(C8H8)2], which has been isolated as a by-product, contains the samarium atom in a sandwichlike coordination by the two η8-C8H82– rings as it is also known from the corresponding anions with cerium and neodymium.  相似文献   

7.
Reaction between 7-azaindole and B(C6F5)3 quantitatively yields 7-(C6F5)3B-7-azaindole (4), in which B(C6F5)3 coordinates to the pyridine nitrogen of 7-azaindole, leaving the pyrrole ring unreacted even in the presence of a second equivalent of B(C6F5)3. Reaction of 7-azaindole with H2O-B(C6F5)3 initially produces [7-azaindolium]+[HOB(C6F5)3]- (5) which slowly converts to 4 releasing a H2O molecule. Pyridine removes the borane from the known complexes (C6F5)3B-pyrrole (1) and (C6F5)3B-indole (2), with formation of free pyrrole or indole, giving the more stable adduct (C6F5)3B-pyridine (3). The competition between pyridine and 7-azaindole for the coordination with B(C6F5)3 again yields 3. The molecular structures of compounds 4 and 5 have been determined both in the solid state and in solution and compared to the structures of other (C6F5)3B-N-heterocycle complexes. Two dynamic processes have been found in compound 4. Their activation parameters (DeltaH = 66 (3) kJ/mol, DeltaS = -18 (10) J/mol K and DeltaH = 76 (5) kJ/mol, DeltaS = -5 (18) J/mol K) are comparable with those of other (C6F5)3B-based adducts. The nature of the intramolecular interactions that result in such energetic barriers is discussed.  相似文献   

8.
9.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

10.
The reaction of (C6F5)2HGeGeH(C6F5)2 with triethylbismuth affords a new polynuclear germylbismuth derivative, [(C6F5Ge]4Bi2 (1). The metal framework of molecule1 has the form of a gable roof built by two central Bi atoms and four peripheral Ge atoms with covalent Bi-Bi bonds [3.045(3) Å], Bi-Ge [2.724(5)-2.755(4) Å] and Ge-Ge [2.444(6), 2.465(6) Å].Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 921–924, May, 1994.  相似文献   

11.
12.
13.
The molecular geometries of the complexes trans-[M(18-crown-6)(C5HO2F6)2] (where M = Ca, Sr, Ba (I), Zn, Cd, Sn, Pb (II), Fe, Co, Eu, and Yb) were modeled by the molecular mechanics method with fixed R(M-O) distances. The shielding degrees of the central metal atom in these complexes were calculated and the number and types of possible intermolecular contacts between their molecules in the structure were determined. The intermolecular interactions involve identical fragments (atoms) of the ligands: the CF3 groups of the hexafluoroacetylacetonate ligands and the methylene fragments of the crown ether. Previously unknown complex II and complex I were synthesized according to an original procedure. The structure and thermochemical properties (including sublimation by the Knudsen method) of complex II were studied. As in complex I, the metal cation in complex II is in the cavity of the macrocycle of the crown ether; the hexafluoroacetylacetonate ligands are trans relative to that cation. The presumed similarity of complexes I and II in thermochemical characteristics was confirmed experimentally. Both the complexes melt in close temperature intervals and sublime at the same temperature (~10?2 mm Hg) without decomposition. The enthalpies of sublimation of complexes I and II, as well as the entropy contributions to their volatilities, are equal to within the experimental error.  相似文献   

14.
15.
Pevec A 《Inorganic chemistry》2004,43(4):1250-1256
The complexes [Ba[(C5Me5)2Ti2F7]2(hmpa)].(THF), 1.hmpa.(THF), and [Ba8Ti6F30I2(C5Me5)6(hmpa)6][I3]2.10(THF), 2[I3]2.10(THF), were prepared from [Hdmpy](+)[(C5Me5)2Ti2F7]- (dmpy = 2,6-dimethylpyridine), BaI2, and hmpa (hmpa = hexamethylphosphoramide). They were characterized by 1H and 19F NMR and IR spectroscopy and examined by single-crystal X-ray crystallography. The complexation equilibrium of the barium ion in 1 with hmpa and the dynamics of the barium ion moving on the fluorine surfaces of [(C5Me5)2Ti2F7]- in 1.hmpa have been studied by variable-temperature 19F NMR spectroscopy. The core of the complex 2[I3]2.10(THF) resembles the basic structural unit of the cubic perovskite.  相似文献   

16.
17.
18.
Novel supramolecular architectures are observed in the solid state structures of [AlMe(C6F5)(mu-Me)]2 (1) and Ga(C6F5)2Me (2) via pi-pi stacking between C6F5 rings and intermolecular aryl-F-->Ga interactions, respectively.  相似文献   

19.
Exposing [Bi(OR)3(toluene)]2 (1, R = OC6F5) to different solvents leads to the formation of larger polymetallic bismuth oxo alkoxides via ether elimination/oligomerization reactions. Three different compounds were obtained depending upon the conditions: Bi4(mu 4-O)(mu-OR)6(mu 3-OBi(mu-OR)3)2(C6H5CH3) (2), Bi8(mu 4-O)2(mu 3-O)2(mu 2-OR)16 (3), Bi6(mu 3-O)4(mu 3-OR)(mu 3-OBi(OR)4)3 (4). Compounds 2 and 3 can also be synthesized via an alcoholysis reaction between BiPh3 and ROH in refluxing dichloromethane or chloroform. Related oxo complexes NaBi4(mu 3-O)2(OR)9(THF)2 (5) and Na2Bi4(mu 3-O)2(OR)10(THF)2 (6) were obtained from BiCl3 and NaOR in THF. The synthesis of 1 and Bi(OC6Cl5)3 via salt elimination was successful when performed in toluene as solvent. For compounds 2-6 the single-crystal X-ray structures were determined. Variable-temperature NMR spectra are reported for 2, 3, and 5.  相似文献   

20.
Binary complex salts of M(NH3)5Cl]2[IrCl6]Cl2 composition, where M = Co(III), Rh(III), or Ir(III), have been studied. All phases are isostructural with [M(NH3)5Cl]2[PtCl6]Cl2 complexes [M = Rh(III) and Ir(III)]; Xray structural and crystallochemical analysis have been performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号