首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.  相似文献   

2.
The surface of ceramic electrolyte ZrO2 + 9 mol % Y2O3, hereinafter referred to as YSZ (abbreviated yttria stabilized zirconia), was modified with 0.1 to 0.2 μm oxide films of ZrO2, Y2O3, and YSZ (same composition as substrate) by dip coating in alcohol solutions of the relevant salts and further annealing. The results of scanning electronic microscopy and X-ray diffraction evidence epitaxial film growth. By means of impedance spectroscopy at the temperatures of 500 to 600°C, the effect of YZS electrolyte surface modification with ZrO2, Y2O3, and YSZ films to the polarization resistance of silver electrode was studied.  相似文献   

3.
Dysprosia (Dy2O3) and dysprosia-doped ZrO2 (~10?wt% Dy2O3) samples were subjected to calorimetric and thermal analyses to understand the effect of dysprosia doping on the thermal properties of ZrO2 and to compare the thermal conductivity of dysprosia-doped ZrO2 (DySZ) to standard 7YSZ (7?wt% Y2O3 in ZrO2). All doped samples were plasma sprayed and subsequently sintered to ensure material densification (reduced porosity for bulk property analysis) and sufficient diffusion of constituents throughout the samples. Differential scanning calorimetry was used to measure the specific heat capacity values for powder and sintered samples as a function of temperature. The thermal conductivities of sintered samples were measured using laser flash techniques. The results showed that the addition of dysprosia to ZrO2 has lowered both the specific heat capacity and thermal diffusivity when compared to the standard 7YSZ. The resulting thermal conductivity of DySZ was 75% lower than that of 7YSZ under the sintered condition.  相似文献   

4.
Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary.  相似文献   

5.
A green BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte layer was deposited on porous anode substrate (BZCY:NiO = 35:65, in weight ratio) by a suspension spray. In this process, the suspension was prepared by directly ball-milling the mixed BaCO3, CeO2, ZrO2 and Y2O3 powders in ethanol for 24 h. Then the bi-layers were co-sintered at 1400 °C for 5 h in air to obtain dense and uniform electrolyte membrane in the thickness of 10 μm. With Nd0.7Sr0.3MnO3−δ cathode, a fuel cell was assembled. It was tested from 600 °C to 700 °C using humid hydrogen as fuel and air as oxidant. The cell at 700 °C exhibited 1.02 V for open circuit voltage (OCV), 450 mW/cm2 for peak output and 0.18 Ω cm2 for electrode polarizations under open circuit conditions, respectively. The results indicate that it is feasible to fabricate thin electrolyte membrane for solid oxide fuel cells (SOFCs) by this simple, cost-effective and efficient technique.  相似文献   

6.
LaMnO3-based perovskites are used as cathode materials in solid oxide fuel cells (SOFC). A major aspect for their applicability is their chemical inertness in connection with the electrolyte material YSZ (Zr0.85Y0.15O1.93) against zirconate formations. Perovskites with the composition Lay-x(Sr, Ca)xMn1-uCouO3 (y = 1.0 and 0.95; x = 0– 0.2 and 1; u = 0 and 0.2) were investigated with regard to their reactivity with YSZ at different reaction times and temperatures. Powder mixtures and double-layer reaction couples were used for the investigations. XRD phase analyses, SEM/EDX and EPMA were applied for the characterization of the annealed samples. La-deficient perovskites (y = 0.95) partially substituted by Sr and Ca improve the chemical compatibility of perovskite compositions towards YSZ. Sr-containing perovskites were found to have a higher reactivity than Ca perovskites for La2Zr2O7 formation. On the other hand enhanced Ca diffusion into YSZ was observed. Co substitution on Mn lattice sites decreased the chemical compatibility, especially for Sr containing perovskites.  相似文献   

7.
Data on the mid-temperature solid-oxide fuel cells (SOFC) with thin-film ZrO2-Y2O3 (YSZ) electrolyte are shown. Such a fuel cell comprises a carrying Ni-YSZ anode, a YSZ electrolyte 3–5 μm thick formed by vacuum ion-plasma methods, and a LaSrMnO3 cathode. It is shown that the use of a combined method of YSZ electrolyte deposition, which involves the magnetron deposition of a 0.5–1.5-μm thick sublayer and its pulse electron-beam processing allows a dense nanostructured electrolyte film to be formed and the SOFC working temperature to be lowered down as the result of a decrease in both the solid electrolyte Ohmic resistance and the Faradaic resistance to charge transfer. SOFC are studied by the methods of voltammentry and impedance spectroscopy. The maximum power density of the SOFC under study is 250 and 600 mW/cm−2 at temperatures of 650 and 800°C, respectively.  相似文献   

8.
Developments of intermediate-temperature solid oxide fuel cells (IT SOFCs) require novel anode materials with a high electrochemical activity at 800–1070 K. The polarization of cermet anodes, made of nickel, ceria and yttria-stabilized zirconia (YSZ) and applied onto a YSZ solid electrolyte, can be significantly reduced by catalytically active ceria additions, the relative role of which increases with decreasing temperature. Further improvement is observed when using Ce0.8Gd0.2O2– (CGO) having a high oxygen ionic conductivity instead of undoped ceria, owing to enlargement of the electrochemical reaction zone. Nanocrystalline CGO powders with grain sizes of 8–35 nm were thus synthesized via the cellulose-precursor technique and introduced into Ni–CGO–YSZ cermets, and tested in contact with a (La0.9Sr0.1)0.98Ga0.8Mg0.2O3– (LSGM) electrolyte at 873–1073 K. The results showed that the anode performance can be enhanced by additional surface activation, in particular by impregnation with a Ce-containing solution, and also by incorporation of YSZ, which probably acts as a cermet-stabilizing component. The overpotential of the surface-modified Ni–CGO (25 wt%–75 wt%) anode in a 10% H2/90% N2 atmosphere was approximately 110 mV at 1073 K with a current density of 200 mA/cm2.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   

9.
A unique combination of methods (TPD of O2, thermogravimetry, isotopic heteroexchange of oxygen in different modes) was used to carry out detailed studies of oxygen mobility and reactivity in mixed praseodymium nickelates-cobaltites (PrNi1 ? x Co x O3 + δ) and their composites with doped cerium dioxide (Ce0.9Y0.1O2 ? δ) as promising cathodic materials stable towards the effect of CO2 in the intermediate-temperature region. It is shown that in the case of composites of PrNi1 ? x Co x O3+δ-Ce0.9Y0.1O2 ? δ synthesized using the Pechini method and ultrasonic treatment, stabilization of the disordered cubic perovskite phase due to redistribution of cations between the phases provides high oxygen mobility. Preliminary results on tests of cathodic materials of this type supported on planar NiO/YSZ anodes (H.C. Starck) with a thin layer of YSZ electrolyte and a buffer Ce0.9Y0.1O2 ? δ layer showed that power density of up to 0.4 W/cm2 was reached in the region of medium (600–700°C) temperatures, which was close to typical values for fuel cells of this type with cathodes based on strontium-doped perovskites and their composites with electrolytes.  相似文献   

10.
Solid oxide fuel cell (SOFC) units were constructed with Ni-GDC (gadolinia-doped ceria) as the anode, YSZ (yttria-stabilized zirconia) as the electrolyte, and V2O5 or Cu added La0.58Sr0.4Co0.2Fe0.8O3?δ (LSCF)-GDC composites as the cathodes, respectively. The electrochemical NO reduction occurs over either V2O5 or Cu added LSCF-GDC cathode without or with the presence of oxygen. The maximum power density decreases with decreasing O2 concentration. When the O2 concentration is 3% or larger, simultaneous NO reduction and electricity generation in the SOFCs can be not only feasible but also beneficial via a synergistic effect.  相似文献   

11.
By studying the effects of different solvents, dispersants and solid loading amount on the suspension stability from sedimentation and viscosity experiments, a simple, effective and highly stable YSZ particle suspension based on MEK/EtOH was developed for dip-coating anode supported electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs). The morphologies of the prepared YSZ thin films from different dip-coating times were studied by scanning electron microscopy (SEM), and a film with a thickness of 16 μm by twice dip-coating was determined to be homogeneous, crack-free and well adherent to the anode substrate. The single cell assembled with this film presents an open-circuit voltage (OCV) of 1.01 V, and a maximum power density of 262 mW cm−2 under H2 as the fuel at 800 °C.  相似文献   

12.
CaZrO3 films are studied that were obtained on ceramic supports of solid electrolyte of ZrO2 + 9 mol % Y2O3 (YSZ, yttria stabilized zirconia) from alcohol solutions of zirconium oxychloride and calcium nitrate using the method of dipping with the following drying and annealing. The thickness and morphology of films depend on the concentration of the film-forming solution. Vickers microhardness of the CaZrO3 films was determined. The impedance spectroscopy method was used to study conductivity of films at the temperature of 400–600°C by comparison of impedance spectra of clean supports and supports with a film coating.  相似文献   

13.
Using the citrate sol-gel method, a new complex oxide Ca0.75Y0.25Co0.15Mn0.85O2.92 is synthesized. It is shown that this compound is crystallized in the rhombically distorted version of perovskite structure (a = 0.53397(8), b = 0.7470(1), c = 0.52810(6) nm). The phase is characterized by a low coefficient of thermal expansion (CTE) (13.8 ppm K?1) and high electric conductivity (135 S/cm at 900°C). The chemical reaction between Ca0.75Y0.25Co0.15Mn0.85O2.92 and the YSZ and GDC electrolyte materials is studied. The material is highly reactive and reacts with YSZ and GDC at 900°C and 1070°C, respectively. It is concluded that Ca0.75Y0.25Co0.15Mn0.85O2.92 is a promising cathodic material for solid oxide fuel cells, provided a reliable protection SDC sublayer is formed between the cathode and the YSZ membrane.  相似文献   

14.
Silver-Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) cathodes were prepared in two ways. In the first method, Ag-BSCF composite powder was prepared in ethanol solution, where Ag nanoparticles serving as a component in the preparation of Ag-BSCF composite cathodes had been previously obtained via one-step synthesis in absolute ethanol using a neutral polymer (polyvinylpyrrolidone). To the best of our knowledge, this is the first study to use a Ag sol obtained by the above method for preparation of Ag-BSCF composite powder. Then, a paste containing this powder was screen-printed on a Sm0.2Ce0.8O1.9 electrolyte and sintered at 1,000 °C. In the second technique, an aqueous solution of AgNO3 was added to a previously sintered BSCF cathode, which was then sintered again at 800 °C. The oxygen reduction reaction at the quasi-point BSCF cathode on the Sm0.2Ce0.8O1.9 electrolyte was tested by electrochemical impedance spectroscopy at different oxygen concentrations in three electrode setup. The continuous decrease of polarization resistance was observed under polarization ?0.5 V at 600 °C. The comparative studies of both obtained composite Ag-BSCF materials were performed in hydrogen-oxygen IT-SOFC involving samaria-doped ceria as an electrolyte and Ni-Gd0.2Ce0.8O1.9 anode. In both cases, the addition of silver to the cathode caused an increase in current and power density compared with an IT-SOFC built with the same components but involving a monophase BSFC cathode material.  相似文献   

15.
Yttrium‐stabilized zirconia (YSZ) has been extensively studied as an electrolyte material for solid oxide fuel cells (SOFC) but its performance in heterogeneous catalysis is also the object of a growing number of publications. In both applications, oxygen activation on the YSZ surface remains the step that hinders utilization at moderate temperature. It was demonstrated by oxygen isotope exchange that a dual catalyst bed system consisting of two successive LaMnO3 and YSZ beds without intimate contact drastically enhances oxygen activation on the YSZ surface at 698 K. It can be concluded that LaMnO3 activates the triplet ground‐state of molecular oxygen into a low‐lying singlet state, thereby facilitating the activation of the O2 molecule on the YSZ oxygen vacancy sites. This phenomenon is shown to improve the catalytic activity of the LaMnO3‐Pd/YSZ system for the partial oxidation of methane.  相似文献   

16.
Information on the across-plane conductivity of films of solid-oxide electrolytes SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ deposited on ion-conducting supports is acquired by the impedance method. It is shown that the support/film interface and the intergrain boundaries considerably affect the across-plane charge transfer in the film. The effect of the crystallographic orientation of the YSZ support on the microstructure and conductivity of the CaZr0.9Y0.1O3–δ electrolyte film is demonstrated.  相似文献   

17.
Improvement of long-term stability of 40vol.%NiO–60vol.% yttria-stabilized zirconia (YSZ) anode material in reducing atmosphere and under exposure to thermal shock through the modification of vacancy concentration and pore shape has been investigated for a solid oxide fuel cell. We varied the amount of Y2O3 additives from 8 to 10 mol% in YSZ and the type of carbon pore former, from plated activated carbon to spherical carbon black, to improve the strength and the stability of porous NiO–YSZ anode materials. Modifications by varying the amount of Y2O3 additives and carbon pore former result in a highly stable anode, even upon exposure to a reducing atmosphere for 1,200 h. In particular, the strengths of the new anode materials are markedly improved at the same porosity level. Higher strengths do not degrade during a longtime durability test in a reducing atmosphere or upon thermal shock testing. The relatively smaller degradation of electrical conductivity of the new anode material is discussed in terms of the possibility of suppression of the disconnectivity of Ni phases during operation of a solid oxide fuel cell.  相似文献   

18.
The electrochemical characteristics of composite cathodes made of (La, Sr) MnO3-(Zr, Sc)O2 (LSM-SSZ), modified with PrO2 − x additive, and designed for application in solid oxide fuel cells at moderately high temperatures were studied. The relationship between activity of catalytically modified composite LSM-SSZ cathodes and dispersity of electrocatalyst was revealed. The boundaries of the temperature range with the maximum dispersity of electrocatalyst and electrochemical activity of cathodes were found. The composite LSM-SSZ cathodes modified with PrO2 − x were shown inert with respect to oxidation reactions of hydrocarbon fuel (methane) and highly active electrochemically with respect to oxygen reaction in non-equilibrium gas mixture of CH4 and O2. In cells with (Ce, Sm)O2 (SDC) and (Zr, Y)O2 (YSZ) electrolytes, their overvoltage is below 80 mV at the current density about 0.5 A/cm2 and temperature of 600°C. These electrodes can be used as cathodes in single-chamber fuel cells. Long-term experiments were carried out to study time stability of characteristics of the said composite cathodes. The studied electrodes show parabolic or damped exponential time curves of polarization resistance if contacting with YSZ or SDC electrolyte, respectively. According to the forecast based on the experimental regularities, the polarization resistance of LSM-SSZ cathodes in 10,000 h will not exceed 0.4 or 0.13 Ohm cm2, respectively, if YSZ or SDC electrolyte is used.  相似文献   

19.
A novel in situ co‐assembled nanocomposite LSM‐Bi1.6Er0.4O3 (ESB) (icn‐LSMESB) was obtained by conjugated wet‐chemical synthesis. It showed an enhancement of the cathode polarization at 600 °C by >140 times relative to conventional LSM‐Y0.08Zr0.84O1.92 (YSZ) cathodes and exceptional solid oxide fuel cell (SOFC) performance of >2 W cm?2 below 750 °C. This demonstrates that this novel cost‐effective and broadly applicable process provides new opportunities for performance enhancement of energy storage and conversion devices by nanotailoring of composite electrodes.  相似文献   

20.
Anode-supported solid oxide fuel cells (SOFCs) based on thin BaZr0.8Y0.2O3 ? δ (BZY) electrolyte films were fabricated by pulsed laser deposition (PLD) on sintered NiO–BZY composite anodes. After in situ reduction of NiO to Ni, the anode substrates became porous, while retaining good adhesion with the electrolyte. A slurry-coated composite cathode made of La0.6Sr0.4Co0.2Fe0.8O3 ? δ (LSCF) and BaCe0.9Yb0.1O3 ? δ (BCYb), specifically developed for proton conducting electrolytes, was used to assemble fuel cell prototypes. Depositing by PLD 100 nm thick LSCF porous films onto the BZY thin films was essential to improve the cathode/electrolyte adhesion. A power density output of 110 mW/cm2 at 600 °C, the largest reported value for an anode-supported fuel cell based on BZY at this temperature, was achieved. Electrochemical impedance spectroscopy (EIS) measurements were used to investigate the different contributions to the total polarization losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号