首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The first three of these axioms describe quantum theory and classical mechanics as statistical theories from the very beginning. With these, it can be shown in which sense a more general than the conventional measure theoretic probability theory is used in quantum theory. One gets this generalization defining transition probabilities on pairs of events (not sets of pairs) as a fundamental, not derived, concept. A comparison with standard theories of stochastic processes gives a very general formulation of the non existence of quantum theories with hidden variables. The Cartesian product of probability spaces can be given a natural algebraic structure, the structure of an orthocomplemented, orthomodular, quasi-modular, not modular, not distributive lattice, which can be compared with the quantum logic (lattice of all closed subspaces of an infinite dimensional Hubert space). It is shown how our given system of axioms suggests generalized quantum theories, especially Schrödinger equations, for phase space amplitudes.  相似文献   

2.
The concept of probability space is generalized to that of stochastic probability space. This enables the introduction of representations of quantum mechanics on stochastic phase spaces. The resulting formulation of quantum statistical mechanics in terms of -distribution functions bears a remarkable resemblance to its classical counterpart. Furthermore, both classical and quantum statistical mechanics can be formulated in one and the same master Liouville space overL 2(). A joint derivation of a classical and quantum Boltzman equation provides an illustration of the practical uses of these formalisms.Supported in part by an NRC grant.  相似文献   

3.
Nonrelativistic quantum mechanics can be derived from real Markov diffusion processes by extending the concept of probability measure to the complex domain. This appears as the only natural way of introducing formally classical probabilistic concepts into quantum mechanics. To every quantum state there is a corresponding complex Fokker-Planck equation. The particle drift is conditioned by an auxiliary equation which is obtained through stochastic energy conservation; the logarithmic transform of this equation is the Schrödinger equation. To every quantum mechanical operator there is a stochastic process; the replacement of operators by processes leads to all the well-known results of quantum mechanics, using stochastic calculus instead of formal quantum rules. Comparison is made with the classical stochastic approaches and the Feynman path integral formulation.  相似文献   

4.
The concepts of joint probability as implied by the Copenhagen and realist interpretations of quantum mechanics are examined in relation to (a) the rules for manipulation of probabilistic quantities, and (b) the role of the Bell inequalities in assessing the completeness of standard quantum theory. Proponents of completeness of the Copenhagen interpretation are required to accept a modification of the classical laws of probability to provide a mechanism for complementarity. A new formulation of the locality postulate is given, not involving factorizability or conditional probabilities, which clarifies the role of locality in the derivation of the Bell inequalities.  相似文献   

5.
In the case of a finite-dimensional Hilbert space, it is shown that quantum mechanics can be embedded into discrete classical probability theory. In particular, states can be represented as stochastic vectors and observables as random variables such that all probabilities and expectation values are given in classical terms.  相似文献   

6.
7.
In an earlier paper by one of us [K.-E. Hellwig (1981)], elements of discrete quantum stochastic processes which arise when the classical probability space is replaced by quantum theory have been considered. In the present paper a general formulation is given and its properties are compared with those of classical stochastic processes. Especially, it is asked whether such processes can be Markovian. An example is given and similarities to methods in quantum statistical thermodynamics are pointed out.  相似文献   

8.
We extend here the many-times formalism, formerly used mainly for particles moving in given classical fields, to interacting particles. In order to minimize the difficulties associated with an equal-time interaction, we limit ourselves to nonrelativistic quantum mechanics and a two-particle interaction, such as that corresponding to the Coulomb force between charged particles. We obtain a set of differential equations which are really not consistent, but they serve as a guide to a formulation in terms of integral equations that has the same perturbation expansion as the usual theory for the scattering of particles. The integral equation for two-particle amplitudes can be modified to give the correct theory for bound states, but this is not the case for more than two particles. We expect that this theory can be generalized to a formulation of relativistic quantum mechanics of interacting particles.  相似文献   

9.
Within the framework of the general theory of stochastic calculus of variations, we examine mainly the notion of second variation in the stochastic mechanics of E. Nelson, a representative of quantum mechanics in which the concept of path for particles keep a sense. We show that the two approaches used in classical calculus of variation to know if a path is not only an extremum but also the minimum of the action, namely, the local one (weak minimum) and the global one (strong minimum), can be generalized to include the quantum-mechanical paths. Thus, we can prove that locally, a solution of the classical equation of motion is really the minimum, even in a large class of quantum paths containing the semi-classical trajectories. By introducing a stochastic version of the excess function of Weierstrass, we show the analogous global property. There, of course, one can speak of the principle of least action in a strict sense. Several explicit examples are discussed.  相似文献   

10.
A conceptual analysis of the classical information theory of Shannon (1948) shows that this theory cannot be directly generalized to the usual quantum case. The reason is that in the usual quantum mechanics of closed systems there is no general concept of joint and conditional probability. Using, however, the generalized quantum mechanics of open systems (A. Kossakowski 1972) and the generalized concept of observable (“semiobservable”, E.B. Davies and J.T. Lewis 1970) it is possible to construct a quantum information theory being then a straightforward generalization of Shannon's theory.  相似文献   

11.
The proper time is introduced as a parameter into the wave functions of relativistic quantum theory by first quantization of the mass. The classical limit is shown to be given by a recently developed canonical formulation of classical relativistic mechanics. The adjoint spinor is redefined with the help of a sign operator to remove a discrepancy between the classical and quantum actions in the behavior under time inversion. This results in positive energy densities for the Dirac theory. The inclusion of this sign operator into the definition of the probability current then removes negative probabilities from the theory. A five-dimensional formulation with first quantized charge is given.  相似文献   

12.
In 1985, Edward Nelson, who formulated the theory of stochastic mechanics, made an interesting remark about Bell's theorem. Nelson analysed the latter in the light of classical fields that behave randomly. He found that if a stochastic hidden variable theory fulfils certain conditions, the inequality of Bell can be violated. Moreover, Nelson was able to prove that this may happen without any instantaneous communication between the two spatially separated measurement stations. Since Nelson's article got almost overlooked by physicists, we try to review his comments on the theorem. We argue that a modification of stochastic mechanics published recently by Fritsche and Haugk can be extended to a theory which fulfils the requirements of Nelson's analysis. The article proceeds to derive the quantum mechanical formalism of spinning particles and the Pauli equation from this version of stochastic mechanics. Then, we investigate Bohm's version of the EPR experiment. Additionally, other setups, like entanglement swapping or time and position correlations, are shortly explained from the viewpoint of our local hidden‐variable model. Finally, we mention that this theory could perhaps be relativistically extended and useful for the formulation of quantum mechanics in curved space‐times.  相似文献   

13.
14.
We show that quaternion quantum mechanics has well-founded mathematical roots and can be derived from the model of the elastic continuum by French mathematician Augustin Cauchy, i.e., it can be regarded as representing the physical reality of elastic continuum. Starting from the Cauchy theory (classical balance equations for isotropic Cauchy-elastic material) and using the Hamilton quaternion algebra, we present a rigorous derivation of the quaternion form of the non- and relativistic wave equations. The family of the wave equations and the Poisson equation are a straightforward consequence of the quaternion representation of the Cauchy model of the elastic continuum. This is the most general kind of quantum mechanics possessing the same kind of calculus of assertions as conventional quantum mechanics. The problem of the Schrödinger equation, where imaginary ‘i’ should emerge, is solved. This interpretation is a serious attempt to describe the ontology of quantum mechanics, and demonstrates that, besides Bohmian mechanics, the complete ontological interpretations of quantum theory exists. The model can be generalized and falsified. To ensure this theory to be true, we specified problems, allowing exposing its falsity.  相似文献   

15.
We present a new way of constructing classical analogies of quantum interference. These analogies share one common factor: they treat closed loops as fundamental entities. Such analogies can be used to understand the difference between quantum and classical probability; they can also be used to illuminate the many worlds interpretation of quantum mechanics. An examination of these analogies suggests that closed loops (particularly closed loops in time) may have special significance in interpretations of quantum interference, because they allow probabilities to remain classically additive.  相似文献   

16.
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen–Specker–Bell theorem and Gleason’s theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.  相似文献   

17.
18.
A stochastic theory approach is used to formulate the theory of quantum mechanical motion. Apart from giving a unifying point of view to quantum mechanics and stochastic theory, the new formulation is not limited to forces derivable from a potential. A nonlinear dynamical law is deduced in contradistinction to previous works in whichad hoc linear laws are postulated.  相似文献   

19.
In classical stochastic theory, the joint probability distributions of a stochastic process obey by definition the Kolmogorov consistency conditions. Interpreting such a process as a sequence of physical measurements with probabilistic outcomes, these conditions reflect that the measurements do not alter the state of the underlying physical system. Prominently, this assumption has to be abandoned in the context of quantum mechanics, yet there are also classical processes in which measurements influence the measured system. Here, conditions that characterize uniquely classical processes that are probed by a reasonable class of such invasive measurements are derived. We then analyze under what circumstances such classical processes can simulate the statistics arising from quantum processes associated with informationally-complete measurements. It is expected that this investigation will help build a bridge between two fundamental traits of non-classicality, namely, coherence and contextuality.  相似文献   

20.
It is shown that the hallmark quantum phenomenon of contextuality is present in classical statistical mechanics (CSM). It is first shown that the occurrence of contextuality is equivalent to there being observables that can differentiate between pure and mixed states. CSM is formulated in the formalism of quantum mechanics (FQM), a formulation commonly known as the Koopman–von Neumann formulation (KvN). In KvN, one can then show that such a differentiation between mixed and pure states is possible. As contextuality is a probabilistic phenomenon and as it is exhibited in both classical physics and ordinary quantum mechanics (OQM), it is concluded that the foundational issues regarding quantum mechanics are really issues regarding the foundations of probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号