首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We observe interband transitions mediated by dipole-dipole interactions for an array of 1D quantum gases of chromium atoms, trapped in a 2D optical lattice. Interband transitions occur when dipolar relaxation releases an energy larger than the lattice band gap. For symmetric lattice sites, and a magnetic field parallel to the lattice axis, we compare the measured dipolar relaxation rate with a Fermi golden rule calculation. Below a magnetic field threshold, we obtain an almost complete suppression of dipolar relaxation, leading to metastable 1D gases in the highest Zeeman state.  相似文献   

2.
In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency omegaS(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.  相似文献   

3.
The solvable model of a periodic array of quantum dots in a magnetic field is investigated. It is shown that in the case of square lattice and irrational flux the energy spectrum of a charged particle in the array has a fractal structure. In the case of honeycomb lattice the existence of an additional splitting of magnetic bands related with lattice geometry. The position of the Van Hove singularities is determined.  相似文献   

4.
We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.  相似文献   

5.
We investigate the existence of the macroscopic quantum phase in trapped ultracold quantum degenerate gases in an asymmetrical two-dimensional magnetic lattice. We show the key to adiabatically control the tunneling in the new two-dimensional magnetic lattice by means of external magnetic bias fields. In solving the system of coupled time-dependent differential equations, described here by the Boson Josephson Junctions (BJJs), we used an order parameter that includes both time-dependent variational parameters to describe the fractional population at each lattice site and the phase difference to quantify the macroscopic quantum phase signature. A dynamical oscillation of the fractional population and the phase difference at each individual lattice site is observed when solving the BJJs system.  相似文献   

6.
We consider interacting bosonic atoms in an optical lattice subject to a large simulated magnetic field. We develop a model similar to a bilayer fractional quantum Hall system valid near simple rational numbers of magnetic flux quanta per lattice cell. Then we calculate its ground state, magnetic lengths, fractional fillings, and find unexpected sign changes in the Hall current. Finally we study methods for detecting these novel features via shot noise and Hall current measurements.  相似文献   

7.
The exchange switching of spin valves by an inverse current can be explained by the interaction of the charge carriers with the spin-injection effective magnetic field. Such an interaction gives rise to transverse spin components, which are transferred to the magnetic lattice and cause its instability and switching. The spin-injection field is produced by longitudinal spin components, but it opens up a channel for the transverse spin transfer to the lattice. The spin transfer to the lattice and the switching occur in the free layer of the spin valve.  相似文献   

8.
The magnetic phase diagrams of 2D and 3D regular lattices formed by nonspherical single-domain ferromagnetic granules featuring a dipolar magnetic interaction are studied. The energy of a magnetic state of such systems is calculated using an approximate expression for the pair interaction of nonspherical granules. The character of the magnetic ground state of the system is determined by three geometric parameters: (i) the eccentricity of granules; (ii) the ratio of periods of the rectangular (2D) or tetragonal (3D) lattice; and (iii) the ratio of a lattice period to a granule size. In contrast to the case of lattices formed by point (or spherical) magnetic moments, in which the ground state is always antiferromagnetic or frustrated (for triangular lattices), the ground state of a 2D lattice composed of nonspherical granules can be ferromagnetic. The magnetic phase diagrams of the systems studied are constructed in the space of the above geometric parameters.  相似文献   

9.
We have investigated magnetoelastic effects in multiferroic YMnO(3) below the antiferromagnetic phase transition, T(N) ≈ 70 K, using neutron powder diffraction. The a lattice parameter of the hexagonal unit cell of YMnO(3) decreases normally above T(N), but decreases anomalously below T(N), whereas the c lattice parameter increases with decreasing temperature and then increases anomalously below T(N). The unit cell volume also undergoes an anomalous contraction below T(N). By fitting the background thermal expansion for a non-magnetic lattice with the Einstein-Grüneisen equation, we determined the lattice strains Δa, Δc and ΔV due to the magnetoelastic effects as a function of temperature. We have also determined the temperature variation of the ordered magnetic moment of the Mn ion by fitting the measured Bragg intensities of the nuclear and magnetic reflections with the known crystal and magnetic structure models and have established that the lattice strain due to the magnetoelastic effect in YMnO(3) couples with the square of the ordered magnetic moment or the square of the order parameter of the antiferromagnetic phase transition.  相似文献   

10.
The dynamic response of a system being near the stable equilibrium boundary to an external magnetic field pulse is studied for 2D lattices of magnetic nanoparticles with cubic crystallographic anisotropy. The conditions under which magnetic moment oscillations from individual dipoles propagate to the entire system are revealed. This effect results in the lattice response are significantly larger in the external pulse duration and with an amplitude rather weakly depending on initial conditions and external field parameters, the processes during which the pulse results in reorientation of only individual lattice dipoles.  相似文献   

11.
The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square 2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external magnetic field has been analyzed. Such a model is applicable for sufficiently small dots with perpendicular anisotropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dots in strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of the system, then near the extended sections of the surface, and finally expands over the entire interior of the array. The critical field at which this simplest state is destroyed is much more weakly than the value characteristic of the ideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing field always begins far from the borders. Despite such different behaviors, the magnetic structure in the intermediate range of fields that is obtained with both increasing and decreasing field for finite arrays strongly differs from that characteristic of the ideal infinite system. The role of simple stacking faults of the magnetic dot lattice (such as single vacancies or their clusters) in the remagnetization of the system has been analyzed. The presence of such faults is shown to give rise to the appearance of local destructions of the chessboard antiferromagnetic order at fields that are much weaker than those for an ideal lattice.  相似文献   

12.
This paper discusses the effect of magnetic translational symmetry on the vortex structure in superconducting crystals with a large basis in artificial Josephson media (regular lattices of superconducting clusters) prepared with opal as the base material. For external magnetic fields lower than the upper critical field, the lattice Ginzburg-Landau model reduces to the two-dimensional Frenkel’-Kontorova model which in some cases is exactly solvable, in which the crystal lattice plays the role of an “hard sublattice” while the deformable vortex lattice plays the role of a “soft sublattice.” It is shown that static shear waves in the vortex lattice are solutions to the two-dimensional sine-Gordon equation with an additional condition of incompressibility implied by flux quantization. The pinning energy is found as a function of the magnetic field, nearness to the transition line, and the crystal lattice constant. Fiz. Tverd. Tela (St. Petersburg) 39, 1158–1162 (July 1997)  相似文献   

13.
Planar magnetic colloidal crystals   总被引:1,自引:0,他引:1  
Wen W  Zhang L  Sheng P 《Physical review letters》2000,85(25):5464-5467
We report a novel form of planar magnetic colloidal crystals formed by coated magnetic microspheres floating on a liquid meniscus. Under an external magnetic field, the balance between the repulsive magnetic interaction and the "attractive" interaction, due to the weight of the particles projected along the surface tangent, yields not only the triangular lattice with a variable lattice constant, but also all the other planar crystal symmetries such as the oblique, centered-rectangular, rectangular, and square lattices. By using two different sized magnetic particles, local formations of 2D quasi-crystallites with fivefold symmetry are also observed.  相似文献   

14.
We present a Bethe Ansatz based investigation of a one-dimensional (1D) Heisenberg spin chain in a real 3D crystal lattice. We have shown that due to an influence of the lattice distortion on a crystalline field of ligands of magnetic ions, a Heisenberg antiferromagnetic spin chain is unstable under the appearance of a magnetic anisotropy of the “easy-plane” type. The effects of an external magnetic field and nonzero temperature onto such a phase transition are studied. Received: 19 January 1998 / Revised: 16 March 1998 / Accepted: 17 March 1998  相似文献   

15.
For the frustrated triangular lattice of Ising magnetic moments with an antiferromagnetic interaction, which is in a state with two sublattices, a new type of topological defects with zero energy in the approximation of the interaction between only the nearest-neighbors has been found. These defects have a nonzero magnetic moment, and the magnetization in a low field occurs via the formation of a system of such defects. These properties are valid for a 2D superstructure in the form of a triangular lattice of single-domain magnetic particles with perpendicular anisotropy and dipole coupling.  相似文献   

16.
We propose an experimental scheme to show that the nonlinear magnetic solitary excitations can be achieved in an atomic spinor Bose–Einstein condensate confined in a blue-detuned optical lattice. Through exact theoretical calculations, we find that the magnetic solitons can be generated by the static magnetic dipole–dipole interaction (MDDI), of which the interaction range can be well controlled. We derive the existence conditions of the magnetic solitons under the nearest-neighboring, the next-nearest-neighboring approximations as well as the long-range consideration. It is shown that the long-range feature of the MDDI plays an important role in determining the existence of magnetic solitons in this system. In addition, to facilitate the experimental observation, we apply an external laser field to drive the lattice, and the existence regions for the magnetic soliton induced by the anisotropic light-induced dipole–dipole interaction are also investigated.  相似文献   

17.
《Physics letters. A》2019,383(21):2451-2455
The mixed spin-(1/2, 3/2) Ising model on a decorated square lattice, which takes into account lattice vibrations of the spin-3/2 decorating magnetic ions at a quantum-mechanical level under the assumption of a perfect lattice rigidity of the spin-1/2 nodal magnetic ions, is examined via an exact mapping correspondence with the effective spin-1/2 Ising model on a square lattice. Although the considered magnetic structure is in principle unfrustrated due to bipartite nature of a decorated square lattice, the model under investigation may display anomalous spin frustration driven by a magnetoelastic coupling. It turns out that the magnetoelastic coupling is a primary cause for existence of the frustrated antiferromagnetic phases, which exhibit a peculiar coexistence of antiferromagnetic long-range order of the nodal spins with a partial disorder of the decorating spins with possible reentrant critical behavior. Under certain conditions, the anomalous spin frustration caused by the magnetoelastic coupling is responsible for unprecedented absence of spontaneous long-range order in the mixed-spin Ising model composed from half-odd-integer spins only.  相似文献   

18.
The topic of this contribution is the investigation of quantum states and quantum Hall effect in electron gas subjected to a periodic potential of the lateral lattice. The potential is formed by triangular quantum antidots located on the sites of the square lattice. In such a system the inversion center and the four-fold rotation symmetry are absent. The topological invariants which characterize different magnetic subbands and their Hall conductances are calculated. It is shown that the details of the antidot geometry are crucial for the Hall conductance quantization rule. The critical values of lattice parameters defining the shape of triangular antidots at which the Hall conductance is changed drastically are determined. We demonstrate that the quantum states and Hall conductance quantization law for the triangular antidot lattice differ from the case of the square lattice with cylindrical antidots. As an example, the Hall conductances of magnetic subbands for different antidot geometries are calculated for the case when the number of magnetic flux quanta per unit cell is equal to three.  相似文献   

19.
We have proposed an effective method for modeling the steel reinforcement in the buildings for electrophysical devices to take into account the magnetic field perturbation caused by the magnetization of bars. The reinforcement lattice has been represented by one or several layers of a homogeneous isotropic material with preliminarily calculated equivalent (averaged) magnetic properties. Examples of calculating these magnetic properties have been considered using a simplified analytic approach, as well as by the numerical simulation of the magnetic field in a 3D cell of a periodic reinforcement lattice. The efficiency of the method has been demonstrated based on an important practical example of simulating the perturbation of a uniform magnetic field caused by the reinforced slab. The results have been compared with the simulation data based on different approaches.  相似文献   

20.
We considered the Heisenberg model on the recursive lattices with multi-spin interaction in a strong magnetic field as an approximation of the two-dimensional kagome lattice, as well as hexagonal recursive lattices as an approximation of triangular lattice, for solid 3He. In a strong magnetic field it is possible to approximate the Heisenberg model with the Izing one. Using dynamic approach, we obtain exact recursion relations for partition functions. Diagrams of the magnetization versus external magnetic field with different spin-exchange parameters and temperatures are presented. Magnetization plateaux, bifurcation points, and doublings are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号