首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We ask, When does a graph G have a subgraph Γ such that the vertices of odd degree in Γ form a specified set S ? V(G), such that G - E(Γ) is connected? If such a subgraph can be found for a suitable choice of S, then this can be applied to problems such as finding a spanning eulerian subgraph of G. We provide a general method, with applications.  相似文献   

2.
For two graphs, G and H, an edge coloring of a complete graph is (G,H)-good if there is no monochromatic subgraph isomorphic to G and no rainbow subgraph isomorphic to H in this coloring. The set of numbers of colors used by (G,H)-good colorings of Kn is called a mixed Ramsey spectrum. This note addresses a fundamental question of whether the spectrum is an interval. It is shown that the answer is “yes” if G is not a star and H does not contain a pendant edge.  相似文献   

3.
A paired-dominating set of a graph G = (VE) with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by γ pr (G), is the minimum cardinality of a paired-dominating set of G. The paired-domination subdivision number sd γpr (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the paired-domination number. In this paper we establish upper bounds on the paired-domination subdivision number and pose some problems and conjectures.  相似文献   

4.
For two nonisomorphic orientations D and D′ of a graph G, the orientation distance do(D,D′) between D and D′ is the minimum number of arcs of D whose directions must be reversed to produce an orientation isomorphic to D′. The orientation distance graph 𝒟o(G) of G has the set 𝒪(G) of pairwise nonisomorphic orientations of G as its vertex set and two vertices D and D′ of 𝒟0(G) are adjacent if and only if do(D,D′) = 1. For a nonempty subset S of 𝒪(G), the orientation distance graph 𝒟0(S) of S is the induced subgraph 〈S〉 of 𝒟o(G). A graph H is an orientation distance graph if there exists a graph G and a set S⊆ 𝒪(G) such that 𝒟o(S) is isomorphic to H. In this case, H is said to be an orientation distance graph with respect to G. This paper deals primarily with orientation distance graphs with respect to paths. For every integer n ≥ 4, it is shown that 𝒟o(Pn) is Hamiltonian if and only if n is even. Also, the orientation distance graph of a path of odd order is bipartite. Furthermore, every tree is an orientation distance graph with respect to some path, as is every cycle, and for n ≥ 3 the clique number of 𝒟o(Pn) is 2 if n is odd and is 3 otherwise. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 230–241, 2001  相似文献   

5.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integer-valued functions defined on V(G) such that 2k − 2 ≤ f(x) for all xV(G). Let H be a subgraph of G with mk edges. In this paper it is proved that every (mg + m − 1,mfm + 1)-graph G has (g,f)-factorizations randomly k-orthogonal to H and shown that the result is best possible.  相似文献   

6.
Let 𝒫 be a graph property. A graph G is said to be locally 𝒫 (closed locally 𝒫) if the subgraph induced by the open neighbourhood (closed neighbourhood, respectively) of every vertex in G has property 𝒫. The clustering coefficient of a vertex is the proportion of pairs of its neighbours that are themselves neighbours. The minimum clustering coefficient of G is the smallest clustering coefficient among all vertices of G. Let H be a subgraph of a graph G and let S ? V (H). We say that H is a strongly induced subgraph of G with attachment set S, if H is an induced subgraph of G and the vertices of V (H) ? S are not incident with edges that are not in H. A graph G is fully cycle extendable if every vertex of G lies in a triangle and for every nonhamiltonian cycle C of G, there is a cycle of length |V (C)|?+?1 that contains the vertices of C. A complete characterization, of those locally connected graphs with minimum clustering coefficient 1/2 and maximum degree at most 6 that are fully cycle extendable, is given in terms of forbidden strongly induced subgraphs (with specified attachment sets). Moreover, it is shown that all locally connected graphs with Δ?≤?6 and sufficiently large minimum clustering coefficient are weakly pancylic, thereby proving Ryj´ǎcek’s conjecture for this class of graphs.  相似文献   

7.
All graphs considered are finite, undirected, with no loops, no multiple edges and no isolated vertices. For a graphH=〈V(H),E(H)〉 and forSV(H) defineN(S)={xV(H):xyE(H) for someyS}. Define alsoδ(H)= max {|S| − |N(S)|:SV(H)},γ(H)=1/2(|V(H)|+δ(H)). For two graphsG, H letN(G, H) denote the number of subgraphs ofG isomorphic toH. Define also forl>0,N(l, H)=maxN(G, H), where the maximum is taken over all graphsG withl edges. We investigate the asymptotic behaviour ofN(l, H) for fixedH asl tends to infinity. The main results are:Theorem A. For every graph H there are positive constants c 1, c2 such that {fx116-1}. Theorem B. If δ(H)=0then {fx116-2},where |AutH|is the number of automorphisms of H. (It turns out thatδ(H)=0 iffH has a spanning subgraph which is a disjoint union of cycles and isolated edges.) This paper forms part of an M.Sc. Thesis written by the author under the supervision of Prof. M. A. Perles from the Hebrew University of Jerusalem.  相似文献   

8.
Let G be a finite group. Denote by Irr(G) the set of all irreducible complex characters of G. Let cd(G)={c(1)  |  c ? Irr(G)}{{\rm cd}(G)=\{\chi(1)\;|\;\chi\in {\rm Irr}(G)\}} be the set of all irreducible complex character degrees of G forgetting multiplicities, and let X1(G) be the set of all irreducible complex character degrees of G counting multiplicities. Let H be any non-abelian simple exceptional group of Lie type. In this paper, we will show that if S is a non-abelian simple group and cd(S) í cd(H){{\rm cd}(S)\subseteq {\rm cd}(H)} then S must be isomorphic to H. As a consequence, we show that if G is a finite group with X1(G) í X1(H){{\rm X}_1(G)\subseteq {\rm X}_1(H)} then G is isomorphic to H. In particular, this implies that the simple exceptional groups of Lie type are uniquely determined by the structure of their complex group algebras.  相似文献   

9.
Closed Separator Sets   总被引:1,自引:0,他引:1  
A smallest separator in a finite, simple, undirected graph G is a set SV (G) such that GS is disconnected and |S|=κ(G), where κ(G) denotes the connectivity of G. A set S of smallest separators in G is defined to be closed if for every pair S,TS, every component C of GS, and every component S of GT intersecting C either X(C,D) := (V (C) ∩ T) ∪ (TS) ∪ (SV (D)) is in S or |X(C,D)| > κ(G). This leads, canonically, to a closure system on the (closed) set of all smallest separators of G. A graph H with is defined to be S-augmenting if no member of S is a smallest separator in GH:=(V (G) ∪ V (H), E(G) ∪ E(H)). It is proved that if S is closed then every minimally S-augmenting graph is a forest, which generalizes a result of Jordán. Several applications are included, among them a generalization of a Theorem of Mader on disjoint fragments in critically k-connected graphs, a Theorem of Su on highly critically k-connected graphs, and an affirmative answer to a conjecture of Su on disjoint fragments in contraction critically k-connected graphs of maximal minimum degree.  相似文献   

10.
A set S of edge‐disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G ? E(H) contains no hamilton cycles. In this context, the spectrum S(G) of a graph G is the set of integers m such that G contains a maximal set of m edge‐disjoint hamilton cycles. This spectrum has previously been determined for all complete graphs and for all complete bipartite graphs. In this paper, we extend these results to the complete multipartite graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 49–66, 2003  相似文献   

11.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

12.
Let G = (V, E) be a connected graph. A set D ? V is a set-dominating set (sd-set) if for every set T ? V ? D, there exists a nonempty set S ? D such that the subgraph 〈ST〉 induced by ST is connected. The set-domination number γs(G) of G is the minimum cardinality of a sd-set. In this paper we develop properties of this new parameter and relate it to some other known domination parameters.  相似文献   

13.
Subgraphs and the Laplacian spectrum of a graph   总被引:1,自引:0,他引:1  
Let G be a graph and H a subgraph of G. In this paper, a set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching. Denoting by ν(H,G) the cardinality of a maximum H-matching in G, we investigate some relations between ν(H,G) and the Laplacian spectrum of G.  相似文献   

14.
《代数通讯》2013,41(8):3227-3245
Abstract

We determine the number of elements of order two in the group of normalized units V(𝔽2 G) of the group algebra 𝔽2 G of a 2-group of maximal class over the field 𝔽2 of two elements. As a consequence for the 2-groups G and H of maximal class we have that V(𝔽2 G) and V(𝔽2 H) are isomorphic if and only if G and H are isomorphic.  相似文献   

15.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integer-valuated functions defined on V(G) such that g(x) ≤f(x) for all xV(G). Then a (g, f)-factor of G is a spanning subgraph H of G such that g(x) ≤d H (x) ≤f(x) for all xV(G). A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let = {F 1, F 2, ..., F m } be a factorization of G and H be a subgraph of G with mr edges. If F i , 1 ≤im, has exactly r edges in common with H, then is said to be r-orthogonal to H. In this paper it is proved that every (mg + kr, mfkr)-graph, where m, k and r are positive integers with k < m and gr, contains a subgraph R such that R has a (g, f)-factorization which is r-orthogonal to a given subgraph H with kr edges. This research is supported by the National Natural Science Foundation of China (19831080) and RSDP of China  相似文献   

16.
A set S of vertices in a graph H=(V,E) with no isolated vertices is a paired-dominating set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph induced by S contains a perfect matching. Let G be a permutation graph and π be its corresponding permutation. In this paper we present an O(mn) time algorithm for finding a minimum cardinality paired-dominating set for a permutation graph G with n vertices and m edges.  相似文献   

17.
It is well‐known that every planar graph has a vertex of degree at most five. Kotzig proved that every 3‐connected planar graph has an edge xy such that deg(x) + deg (y) ≤ 13. In this article, considering a similar problem for the case of three or more vertices that induce a connected subgraph, we show that, for a given positive integer t, every 3‐connected planar graph G with |V(G)| ≥ t has a connected subgraph H of order t such that ΣxV(H) degG(x) ≤ 8t − 1. As a tool for proving this result, we consider decompositions of 3‐connected planar graphs into connected subgraphs of order at least t and at most 2t − 1. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 191–203, 1999  相似文献   

18.
Let G be a finite group. Denote by Irr(G) the set of all irreducible complex characters of G. Let cd(G) be the set of all irreducible complex character degrees of G forgetting multiplicities, that is, cd(G) = {χ(1) : χ ∈ Irr(G)} and let cd *(G) be the set of all irreducible complex character degrees of G counting multiplicities. Let H be an alternating group of degree at least 5, a sporadic simple group or the Tits group. In this paper, we will show that if G is a non-abelian simple group and cd(G) í cd(H)cd(G)\subseteq cd(H) then G must be isomorphic to H. As a consequence, we show that if G is a finite group with cd*(G) í cd*(H)cd^*(G)\subseteq cd^*(H) then G is isomorphic to H. This gives a positive answer to Question 11.8 (a) in (Unsolved problems in group theory: the Kourovka notebook, 16th edn) for alternating groups, sporadic simple groups or the Tits group.  相似文献   

19.
Suppose that G, H are infinite graphs and there is a bijection Ψ; V(G) Ψ V(H) such that G - ξ ? H - Ψ(ξ) for every ξ ~ V(G). Let J be a finite graph and /(π) be a cardinal number for each π ? V(J). Suppose also that either /(π) is infinite for every π ? V(J) or J has a connected subgraph C such that /(π) is finite for every π ? V(C) and every vertex in V(J)/V(C) is adjacent to a vertex of C. Let (J, I, G) be the set of those subgraphs of G that are isomorphic to J under isomorphisms that map each vertex π of J to a vertex whose valency in G is /(π). We prove that the sets (J, I, G), m(J, I, H) have the same cardinality and include equal numbers of induced subgraphs of G, H respectively.  相似文献   

20.
Let G admit an H-edge covering and f : V èE ? {1,2,?,n+e}{f : V \cup E \to \{1,2,\ldots,n+e\}} be a bijective mapping for G then f is called H-edge magic total labeling of G if there is a positive integer constant m(f) such that each subgraph H i , i = 1, . . . , r of G is isomorphic to H and f(Hi)=f(H)=Sv ? V(Hi)f(v)+Se ? E(Hi) f(e)=m(f){f(H_i)=f(H)=\Sigma_{v \in V(H_i)}f(v)+\Sigma_{e \in E(H_i)} f(e)=m(f)}. In this paper we define a subgraph-vertex magic cover of a graph and give some construction of some families of graphs that admit this property. We show the construction of some C n - vertex magic covered and clique magic covered graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号