首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetization reversal of ultrathin Co films on Cu(001) has been investigated by grazing ion scattering and magneto-optical Kerr effect. Differences in the behavior of surface and bulk magnetization are found and attributed to the reduced coordination and site symmetry at the surface. The reversal behavior of the surface magnetization depends on the chemical surface composition. For pure Co films, the reversal of the bulk magnetization is preceded by a complete reversal of the surface magnetization. A particular magnetic state of the surface is suggested as a precursor for magnetization reversal.  相似文献   

2.
It is shown that the pair breaking parameter of the Maki-Thompson contributions to the fluctuation conductivity above the superconducting transition temperature has the same thickness dependence as the transition temperature depression in very thin amorphous Be-Al films. Both can be ascribed to an extremely thin surface sheath with suppressed superconductivity.Supported by the Swedish Natural Science Research Board.  相似文献   

3.
4.
The magnetic configurations induced by the growth process in a thin film with perpendicular magnetisation have been observed by magnetic force microscopy (MFM). The FePd thin film has been grown by molecular beam epitaxy. A high uniaxial chemical ordering of the alloy into the tetragonal L10 structure induces the development of a large perpendicular anisotropy. As the growth process is performed below the Curie temperature of the FePd alloy, domain nucleation occurs during the growth process. The magnetic configuration has been imaged in the as grown state. As the equilibrium size of the magnetic domains decreases when the thickness of the layer increases, the domains obtained from spontaneous nucleation at the beginning of the growth of the thin film are submitted to very large strains as the layer thickness increases. At low thicknesses (low strains), the domain wall instability gives rise to an undulation of the domain walls. Thereafter, it leads to the formation of well-defined magnetic fingers, thus giving birth to the coexistence of two length scale in the domain structure. A quantitative estimation of the strain leading to the fingering instability is obtained. Last, the implications of these observations on the kinetic of domain wall distortion in ultrathin layers are discussed.  相似文献   

5.
6.
The nanodynamics of ferroelectric ultrathin films made of PbTi(0.6)Zr(0.4)TiO(3) alloy is explored via the use of a first-principles-based technique. Our atomistic simulations predict that the nanostripe domains which constitute the ground state of ferroelectric ultrathin films under most electric boundary conditions oscillate under a driving ac field. Furthermore, we find that the atomically thin wall, or nanowall, that separates the nanodomains with different polarization directions behaves as an elastic object and has a mass associated with it. The nanowall mass is size-dependent and gives rise to a unique size-driven transition from resonance to relaxational dynamics in ultrathin films. A general theory of nanodynamics in such films is developed and used to explain all computational findings. In addition, we find an unusual dynamical coupling between nanodomains and mechanical deformations that could potentially be used in ultrasensitive electromechanical nanosensors.  相似文献   

7.
8.
It is well known that there are two possible switching mechanisms in ferroelectric crystals and films (see, e.g., Tagantsev et al 2010 Domains in Ferroic Crystals and Thin Films (Berlin: Springer)). The first mechanism, which follows from the mean-field theory of Landau-Ginzburg, is a homogeneous one and does not connect domains. This mechanism was never observed before 1998. The second mechanism, connected with nucleation and domain movement, is common for the ferroelectrics and is well known from the time of domain discovery (1956). In the present paper the existence of a homogeneous mechanism of switching in ultrathin copolymer films is confirmed by piezoresponse force microscopy. The results of the present paper permit us to suppose that homogeneous switching exists in other ultrathin ferroelectric films.  相似文献   

9.
10.
11.
12.
The first realization of instabilities in the shear flow between two superfluids is examined. The interface separating the A and B phases of superfluid 3He is magnetically stabilized. With uniform rotation we create a state with discontinuous tangential velocities at the interface, supported by the difference in quantized vorticity in the two phases. This state remains stable and nondissipative to high relative velocities, but finally undergoes an instability when an interfacial mode is excited and some vortices cross the phase boundary. The measured properties of the instability are consistent with the classic Kelvin-Helmholtz theory when modified for two-fluid hydrodynamics.  相似文献   

13.
The local and cooperative dynamics of supported ultrathin films ( L = 6.4 - 120 nm) of isotactic poly(methyl methacrylate) (i-PMMA, Mn = 118 x 10(3) g/mol) was studied using dielectric relaxation spectroscopy for a wide range of frequencies (0.1 Hz to 10(6) Hz) and temperatures (250 - 423 K). To assess the influence of the PMMA film surfaces on the glass transition dynamics, two different sample geometries were employed: a single layer PMMA film with the film surfaces in direct contact with aluminum films which act as attractive, hard boundaries; and a stacked polystyrene-PMMA-polystyrene trilayer film which contains diffuse PMMA-PS interfaces. For single layer films of i-PMMA, a decrease of the glass transition temperature T(g) by up to 10 K was observed for a film thickness L < 25 nm (comparable to R(EE)), indicated by a decrease of the peak temperature T(alpha) in the loss epsilon(")(T) at low and high frequencies and by a decrease in the temperature corresponding to the maximum in the apparent activation energy E(a)(T) of the alpha-process. In contrast, measurements of i-PMMA sandwiched between PS-layers revealed a slight (up to 5 K) increase in T(g) for PMMA film thickness values less than 30 nm. The slowing down of the glass transition dynamics for the thinnest PMMA films is consistent with an increased contribution from the less mobile PMMA-PS interdiffusion regions.  相似文献   

14.
The European Physical Journal E - The local and cooperative dynamics of supported ultrathin films (L = 6.4 - 120 nm) of isotactic poly(methyl methacrylate) (i-PMMA, $\overline{M}_n = 118\times10^3$...  相似文献   

15.
Relying on first principles simulations of stoichiometric MgO, ZnO, and NaCl (1x1) ultrathin (111) films, we demonstrate the existence of a critical thickness below which polarity is uncompensated: the surface charges are bulklike, and the total dipole moment and the formation energy grow linearly with thickness. This study reveals novel facets of the problematics of polarity akin to the nanoscopic size of the objects and opens stimulating perspectives on polar nanostructures with surface properties and reactivity unaffected by charge compensation as in macroscopic samples.  相似文献   

16.
Ultrathin conductive carbon layers (UCCLs) were created by spin coating resists and subsequently converting them to conductive films by pyrolysis. Homogeneous layers as thin as 3 nm with nearly atomically smooth surfaces could be obtained. Layer characterization was carried out with the help of atomic force microscopy, profilometry, four-point probe measurements, Raman spectroscopy and ultraviolet-visible spectroscopy. The Raman spectra and high-resolution transmission electron microscopy image indicated that a glassy carbon like material was obtained after pyrolysis. The electrical properties of the UCCL could be controlled over a wide range by varying the pyrolysis temperature. Variation in transmittance with conductivity was investigated for applications as transparent conducting films. It was observed that the layers are continuous down to a thickness below 10 nm, with conductivities of 1.6 × 104 S/m, matching the best values observed for pyrolyzed carbon films. Further, the chemical stability of the films and their utilization as transparent electrochemical electrodes has been investigated using cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

17.
A key challenge in thin-film growth is controlling structure and composition at the atomic scale. We have used spatially resolved electron scattering to measure how the three-dimensional composition profile of an alloy film evolves with time at the nanometer length scale. We show that heterogeneity during the growth of Pd on Cu(001) arises naturally from a generic step-overgrowth mechanism relevant in many growth systems.  相似文献   

18.
The evolution of tetragonality with thickness has been probed in epitaxial c-axis oriented PbTiO3 films with thicknesses ranging from 500 down to 24 A. High resolution x ray pointed out a systematic decrease of the c-axis lattice parameter with decreasing film thickness below 200 A. Using a first-principles model Hamiltonian approach, the decrease in tetragonality is related to a reduction of the polarization attributed to the presence of a residual unscreened depolarizing field. It is shown that films below 50 A display a significantly reduced polarization but still remain ferroelectric.  相似文献   

19.
The magnetic properties of Au/Ni/Si(100) films with Ni thicknesses of 8–200 Å are studied at T=77 K using a scanning magnetic microscope with a thin-film high-temperature dc SQUID. It is found that the Ni films, with an area of 0.6×0.6 mm, which are thicker than 26 Å have a single-domain structure with the magnetic moment oriented in the plane of the film and a saturation magnetization close to 0.17 MA/m. For films less than 26 Å thick, the magnetization of the film is found to drop sharply.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号