首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New N-(3-aminopropyl) (L1, L2) and (2-cyanoethyl) (L3, L4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L1 and L2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L2 as well as with L1, but the latter exhibits mononuclear complexes with slightly higher K(ML) values while the dinuclear complexes of L2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)]3+ and [CoL3Cl]+ revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [CoL3Cl]+ complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)]3+ complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.  相似文献   

2.
New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17](DBF)N(2)O(2) (L(1)) and N,N'-bis(2-aminoethyl)-[22](DBF)N(2)O(3) (L(2)), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO(3). Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L(2). The thermodynamic binding affinities of the metal complexes of L(2) are lower than those of L(1) as expected, but the Pb(2+) complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd(2+) and Pb(2+) for L(1) are very high, when compared to those of Co(2+), Ni(2+) and Zn(2+). These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper(II) complexes with both ligands were further studied by UV-vis-NIR spectroscopy in DMSO-H(2)O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L(1) was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co(2+) to Zn(2+) complexes, and only the larger Cd(2+) and Pb(2+) manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.  相似文献   

3.
Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n]py2N4 n= 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]-py2N4 are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degrees C in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22]py2N4 show significant differences from those described previously, while [24]py2N4 has not been studied before and [26]py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [22]- to [26]-py2N4 were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving-Williams order: NiL2+ < CuL2+ > ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu2([20]py2N4)(H2O)4][Cu(H2O)6](SO4)3 x 3H2O and [Cu(2)([20]py(2)N4)(CH3CN)4][Ni([20]py2N4)]2(ClO4)8 x H2O, which are composed of homodinuclear [Cu2([20]py2N4])(H2O)4]4+ and [Cu2([20]py2N4])(CH3CN))4]4+, and mononuclear species, [Cu(H2O)6]2+ and [Ni([20]py2N4)]2+, respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in and acetonitrile in . The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) A in 1a and 2a, respectively. The mononuclear complex [Ni([20]py2N4])]2+ displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.  相似文献   

4.
《Polyhedron》1999,18(26):3479-3489
A new N-carboxymethyl derivative of the oxa-tetraaza macrocyle, 4,7,10,13-tetrakis-(carboxymethyl)-1-oxa-4,7,10,13-tetraazacyclopentadecane, has been synthesised. The protonation constants of this compound and the stability constants of its complexes with several di- and trivalent metal ions were determined by potentiometric or spectrophotometric methods, at 25°C and ionic strength 0.10 M in tetramethyl ammonium nitrate. The ligand exhibits two high or fairly high values of protonation constants and two low ones, and its overall basicity is about 27 in log units. Mono- and dinuclear complexes were found. The stability constant values of the 1:1 complexes with most of the metal ions studied are lower than expected, but not those of the dinuclear complexes. This was interpreted, in the case of mononuclear complexes, as the non-involvement in the co-ordination to these metal ions of two nitrogen atoms of the macrocycle backbone and, probably also, of one or two carboxylate groups. The Cu2+ ion has an exceptional behaviour, its 1:1 complex exhibits a high stability constant value. Spectroscopic data have indicated, for the last complex, the presence of two octahedral isomers in solution, one of them having only two nitrogens in the co-ordination sphere, while in the other three nitrogen donor atoms of the macrocyclic framework are co-ordinated in the equatorial plane. A third species appears at pH values higher than 7. These features suggest that the presence of four carboxymethyl arms and the relatively large size of the macrocycle severely constrains the geometric arrangement of the nitrogen donor atoms of the macrocyclic backbone around the metal centre decreasing the co-ordination number or leading to a preferred co-ordination with oxygen atoms. Another consequence of these structural features, is their easy ability to form dinuclear complexes, as found in the equilibria studies in solution and also by EPR spectroscopy of the Cu2+ complexes where the presence of two types of signals in the ΔMs=1 and ΔMs=2 regions, clearly reveals the presence of the dinuclear complex.  相似文献   

5.
The synthesis of the macrocyclic ligand 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridylophane (L3), which contains a pentaamine chain linking the 4,4'-positions of a 2,2'-dipyridine moiety, is reported. Protonation and Zn(II) complexation by L3 and by macrocycle L2, containing the same pentaamine chain connecting the 6,6'-positions of 2,2'-dipyridine, were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. While in L2 all the nitrogen donor atoms are convergent inside the macrocyclic cavity, in L3 the heteroaromatic nitrogen atoms are located outside. Both ligands form mono- and dinuclear Zn(II) complexes in aqueous solution. In the mononuclear Zn(II) complexes with L2, the metal is coordinated inside the macrocyclic cavity, bound to the heteroaromatic nitrogen donors and three amine groups of the aliphatic chain. As shown by the crystal structure of the [ZnL2](2+) complex, the two benzylic nitrogens are not coordinated and facile protonation of the complex takes place at slightly acidic pH values. Considering the mononuclear [ZnL3](2+) complex, the metal is encapsulated inside the cavity, not coordinated by the dipyridine unit. Protonation of the complex occurs on the aliphatic polyamine chain and gives rise to translocation of the metal outside the cavity, bound to the heteroaromatic nitrogens.  相似文献   

6.
Two N-methylphosphonic acid derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized, H(4)L(1) and H(6)L(2). The protonation constants of these compounds and the stability constants of complexes of both ligands with Ni(2+), Cu(2+) and Zn(2+) were determined by potentiometric methods at 298 K and ionic strength 0.10 mol dm(-3) in NMe(4)NO(3). The high overall basicity of both compounds is ascribed to the presence of the phosphonate arms. (1)H and (31)P NMR spectroscopic titrations were performed to elucidate the sequence of protonation, which were complemented by conformational analysis studies. The complexes of these ligands have stability constants of the order of or higher than those formed with ligands having the same macrocyclic backbone but acetate arms. At pH = 7 the highest pM values were found for solutions containing the compound with three acetate groups, followed immediately by those of H(6)L(2), however, as expected, the increasing pH favours the complexes of ligands containing phosphonate groups. The single-crystal structure of Na(2)[Cu(HL(1))]NO(3)x8H(2)O has shown that the coordination geometry around the copper atom is a distorted square pyramid. Three nitrogen atoms of the macrocyclic backbone and one oxygen atom from one methylphosphonate arm define the basal plane, and the apical coordination is accomplished via the nitrogen atom trans to the pyridine ring of the macrocycle. To achieve this geometric arrangement, the macrocycle adopts a folded conformation. This structure seems consistent with Uv-vis-NIR spectroscopy for the Ni(2+) and the Cu(2+) complexes and with the EPR for the latter.  相似文献   

7.
Zn(II) binding by the dipyridine-containing macrocycles L1-L3 has been analyzed by means of potentiometric measurements in aqueous solutions. These ligands contain one (L1, L2) or two (L3) 2,2'-dipyridine units as an integral part of a polyamine macrocyclic framework having different dimensions and numbers of nitrogen donors. Depending on the number of donors, L1-L3 can form stable mono- and/or dinuclear Zn(II) complexes in a wide pH range. Facile deprotonation of Zn(II)-coordinated water molecules gives mono- and dihydroxo-complexes from neutral to alkaline pH values. The ability of these complexes as nucleophilic agents in hydrolytic processes has been tested by using bis(p-nitrophenyl) phosphate (BNPP) as a substrate. In the dinuclear complexes the two metals play a cooperative role in BNPP cleavage. In the case of the L2 dinuclear complex [Zn(2)L2(OH)(2)](2+), the two metals act cooperatively through a hydrolytic process involving a bridging interaction of the substrate with the two Zn(II) ions and a simultaneous nucleophilic attack of a Zn-OH function at phosphorus; in the case of the dizinc complex with the largest macrocycle L3, only the monohydroxo complex [Zn(2)L3(OH)](3+) promotes BNPP hydrolysis. BNPP interacts with a single metal, while the hydroxide anion may operate a nucleophilic attack. Both complexes display high rate enhancements in BNPP cleavage with respect to previously reported dizinc complexes, due to hydrophobic and pi-stacking interactions between the nitrophenyl groups of BNPP and the dipyridine units of the complexes.  相似文献   

8.
The interaction of the cyclic nonapeptide oxytocin (OT) with a number of alkaline earth and divalent transition metal ions (X(2+)) was examined employing mass spectrometry (MS) and ion mobility spectrometry (IMS) techniques in combination with molecular dynamics (MD) and density functional theory (DFT) calculations. Under acidic conditions it was found that OT exhibits an exceptionally strong affinity for all divalent metal ions resulting in strong [OT + X](2+) peaks in the mass spectrum. Under basic conditions only Cu(2+) and Ni(2+)-OT complexes were detected and these were singly, doubly, triply, or quadruply deprotonated. Collision-induced dissociation of the [OT - 3H + Cu](-) complex yielded exclusively C-terminal Cu(2+)-containing fragments (Cu(2+)fragment(3-)), suggesting that the Cu(2+) ligation site includes deprotonated C-terminal backbone amide nitrogen atoms and the N-terminal amino nitrogen atom in [OT - 3H + Cu](-). MD and DFT calculations indicate a square-planar complex is consistent with these observations and with experimental collision cross sections. MD and DFT calculations also indicate either an octahedral or trigonal-bipyramidal complex between Zn(2+) and OT is lowest in energy with carbonyl oxygens being the primary ligation sites. Both complexes yield cross sections in agreement with experiment. The biological impact of the structural changes induced in OT by divalent metal ion coodination is discussed.  相似文献   

9.
The binding properties of dioxadiaza- ([17](DBF)N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group (DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water (1:1, v/v), and at ionic strength 0.10 mol dm-3 in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [17](DBF)N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper(II), indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of the mentioned metal ions. The crystal structures of H2[17](DBF)N2O3(2+) (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel(II) and copper(II) complexes with the two ligands were further studied by UV-vis-NIR and the copper(II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.  相似文献   

10.
Divalent metal complexes of macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)) (1,8-H4te2p, H4L) were investigated in solution and in the solid state. The majority of transition-metal ions form thermodynamically very stable complexes as a consequence of high affinity for the nitrogen atoms of the ring. On the other hand, complexes with Mn2+, Pb2+ and alkaline earth ions interacting mainly with phosphonate oxygen atoms are much weaker than those of transition-metal ions and are formed only at higher pH. The same tendency is seen in the solid state. Zinc(II) ion in the octahedral trans-O,O-[Zn(H2L)] complex is fully encapsulated within the macrocycle (N4O2 coordination mode with protonated phosphonate oxygen atoms). The polymeric {[Pb(H2L)(H2O)2].6H2O}n complex has double-protonated secondary amino groups and the central atom is bound only to the phosphonate oxygen atoms. The phosphonate moieties bridge lead atoms creating a 3D-polymeric network. The [{(H2O)5Mn}2(micro-H2L)](H2L).21H2O complex contains two pentaaquamanganese(II) moieties bridged by a ligand molecule protonated on two nitrogen atoms. In the complex cation, oxygen atoms of the phosphonate groups on the opposite sites of the ring occupy one coordination site of each metal ion. The second ligand molecule is diprotonated and balances the positive charge of the complex cation. Complexation of zinc(II) and cadmium(II) by the ligand shows large differences in reactivity of differently protonated ligand species similarly to other cyclam-like complexes. Acid-assisted dissociations of metal(II) complexes occur predominantly through triprotonated species [M(H3L)]+ and take place at pH < 5 (Zn2+) and pH < 6 (Cd2+).  相似文献   

11.
The "one-pot" synthesis and characterization of a large 28-mer macrocycle (H(4)L(2)) with oxamido units capable of complexing guest ions through oxygen or nitrogen donor atoms is reported. Single-crystal structure determination of H(8)L(2)(NO(3))(4) and (Cu(2)[H(2)L(2)](H(2)O)(2))(NO(3))(2) demonstrated that the macrocycle contains two sites capable of complexing two nitrate anions or two copper(II) ions, involving a large structural reorganization in the conformation of the macrocyclic framework on coordination of the copper(II) ions when compared to the nitrate. Electrochemical and magnetic susceptibility measurements on the dinuclear Cu(II) complex and the related mononuclear and trinuclear Cu(II) complexes derived from the related 14-mer macrocycle were carried out and illustrate the role of the oxamido groups in mediating metal-metal interaction and delocalization.  相似文献   

12.
A new potentially hexadentate tetraazamacrocycle based on the cyclen skeleton has been synthesized and fully characterized. The macrocycle 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-bis(methanephosphonic acid monoethyl ester) dipotassium salt (Me2DO2PME) contains mutually trans monoethyl ester phosphonate acid substituents on two nitrogen atoms, and trans methyl substituents on the other two nitrogen atoms. The protonation constants of this macrocycle and the stability constants of its complexes with Cu2+, Zn2+, Gd3+ and Ca2+ ions have been determined by pH potentiometric titrations. The protonation sequence of the macrocycle has been studied by 1H, 31P[1H] and 13C[1H] NMR spectroscopy: the first and second protonation steps take place at the methyl-substituted nitrogen atoms, while the third protonation involves one oxygen from a phosphonate group. Upon protonation, all the CH2 ring protons become magnetically inequivalent on the NMR time scale due to a slow conformational rearrangement, most likely occasioned by the formation of multiple hydrogen bonds within the macrocyclic ring. Me2DOPM forms neutral, mononuclear complexes with all the metals investigated. The presence of hydroxo complexes was observed for Ca2+ and Zn2+ at high pH values. Structural information on the neutral complex [Cu(Me2DO2PME)] has been obtained by a solution X-Band EPR study. It is proposed that Me2DO2PME binds Cu2+ in a distorted octahedral structure using all of its donor atoms, i.e. the four nitrogen atoms and the two phosphonate oxygen atoms. The redox chemistry of [Cu(Me2DO2PME)] in dimethyl sulfoxide and water has been studied by electrochemical measurements. Cyclic voltammetry in DMSO shows the complex to undergo a quasireversible one-electron reduction step leading to an unstable CuI species.  相似文献   

13.
A phenanthroline-based macrocycle 1 has been newly developed which has two chemically equivalent metal chelating sites within the spatially restricted cavity for dinuclear metal arrangement. The macrocycle 1 reacts with Zn(CF(3)CO(2))(2) or ZnCl(2) to form homodinuclear Zn(II)-complexes. A single-crystal X-ray structural analysis of the resulting Zn(2)1(CF(3)CO(2))(4) determined the complex structure in which two Zn(II) ions are bound by two phenanthroline sites and two CF(3)CO(2)(-) ions bind to each Zn(II) ion in a tetrahedral geometry. Similarly, a homodinuclear Cu(I)-macrocycle was formed from 1 and Cu(CH(3)CN)(4)BF(4). Notably, from 1 and an equimolar mixture of Cu(CH(3)CN)(4)BF(4) and Zn(CF(3)CO(2))(2), a heterodinuclear Cu(I)-Zn(II)-macrocycle was exclusively formed in high yield (>90%) because of the relatively low stability of the dinuclear Cu(I)-macrocycle. A heterodinuclear Ag(I)-Zn(II)-macrocycle was similarly formed with fairly high selectivity from a mixture of Ag(I) and Zn(II) ions. Such selective heterodinuclear metal arrangement was not observed with other combinations of M-Zn(II) (M = Li(I), Mg(II), Pd(II), Hg(II), La(III), and Tb(III)).  相似文献   

14.
The syntheses of dinuclear calcium perchlorate and/or nitrate complexes by template and direct methods, employing macrocyclic ligands with 18, 20, 22, and 26 membered rings are reported. The presence of pendant arms provide with coordinative NxOy donor atoms in the smaller macrocycles, the high number of donor atoms between 7 and 10, and the dinuclear composition obtained in all the systems examined, point out that in the formed solid complexes both Ca2+ ions could be located inside of the macrocycle cavities. Transmetallation reaction of a lanthanide(III) complex, [L5Sm](ClO4)3·9H2O, with Ca(ClO4)2·xH2O leads the formation of the new dinuclear orange [L5Ca2](ClO4)4·3H2O complex, manifesting the versatility of this macrocyclic cavity. All complexes have been characterized by microanalysis, IR, UV‐vis, 1H NMR spectroscopy, FAB mass spectrometry, FAAS spectroscopy, and conductivity measurements.  相似文献   

15.
The copper(II), nickel(II), and zinc(II) complexes of the acyclic Schiff base H(2)L(A), obtained by [1 + 2] condensation of 1,2-ethanediamine,N-(2-aminoethyl)-N-methyl with 3-ethoxy-2-hydroxybenzaldehyde, and of H(2)L(B), the reduced derivative of H(2)L(A), were prepared and their properties studied by IR, NMR and SEM-EDS. In these complexes, the metal ion is always located in the coordination chamber of the ligand delimited by two phenol oxygens and nitrogen atoms (either aminic or iminic). The coordination behaviour of H(2)L(A) and H(2)L(B) towards H(+), Cu(2+), Ni(2+) and Zn(2+) in aqueous solution at 298 K and mu = 0.1 mol dm(-3) (Na)ClO(4) was also studied by potentiometric, NMR and UV-VIS measurements. In particular, potentiometric equilibrium studies indicate that H(2)L(A) is not stable enough to have a pH range in which it is the sole species in aqueous solution. In such a solution, the Schiff base forms over a limited pH range, between 6 and 10, with a maximum formation percentage at pH approximately 9. In addition, the involvement of imine nitrogens in the complexes markedly stabilises the azomethylene linkage, so that the metal complexes of H(2)L(A), particularly those of copper(II), are the species largely prevailing in solutions with pH >3.5. The stability constants of the complexes formed by metal ions with H(2)L(A) and H(2)L(B) follow the order Cu(2+) > Ni(2+) > Zn(2+); distribution plots show that copper(II) gives complexes more stable with H(2)L(A), whereas Ni(2+) and Zn(2+) prefer the reduced ligand, H(2)L(B).  相似文献   

16.
The La(III), Ce(III), Pr(III), Nd(III), Sm(III), and Eu(III) complexes of the racemic heterochiral nonaaza macrocyclic amine L have been synthesized and characterized by spectroscopic methods. The X-ray crystal structures of the [PrL][Pr(NO(3))(6)].CH(3)OH and the isomorphic [NdL][Nd(NO(3))(6)].CH(3)OH complexes show that all nine nitrogen atoms of the macrocycle coordinate to the Ln(3+) ion, completing its coordination sphere. The macrocycle wraps tightly around the metal ion in double-helical fashion. The structures reveal the RRRRSS/SSSSRR configuration at the stereogenic carbon atoms of the three cyclohexane rings, confirming the heterochiral nature of the parent 3 + 3 macrocycle obtained in the condensation of racemic trans-1,2-diaminocyclohexane and 2,6-diformylpyridine. The NMR spectra of the isolated complexes indicate the presence of low C(1) symmetry [LnL](3+) complexes. The same symmetry is indicated by the X-ray crystal structures of Pr(III) and Nd(III) complexes, which show that for the RRRRSS enantiomer of the macrocycle L, the helix axis passes through the cyclohexane ring of RR chirality and the opposite pyridine ring. The NMR studies of complex formation in solution by the paramagnetic Pr(3+) and Eu(3+) ions indicate that the initially formed [LnL](3+) complexes are of C(2) symmetry. For the RRRRSS enantiomer of the macrocycle L in the C(2)-symmetric species, the helix axis passes through the cyclohexane ring of SS chirality and the opposite pyridine ring. The C(1)-symmetric and C(2)-symmetric forms of the [LnL](3+) complexes constitute a new kind of isomers and the conversion of the kinetic complexation product of C(2) symmetry into the thermodynamic product of C(1) symmetry corresponds to an unprecedented switching of the orientation of the helix axis within the macrocycle framework.  相似文献   

17.
Factors that influence aggregation of lanthanide(III) (Ln(III)) ions to form polynuclear complexes were studied utilizing 1-aziridineethanol as a versatile source of macrocyclic and acyclic chelates. The facile ring-opening cyclo-oligomerization of 1-aziridineethanol leads to the formation of a series of polyaza cyclic oligomers (series A). In the presence of ethylenediamine, a competing N-alkylation reaction occurs to produce a new class of acyclic ligands (series B). The cyclo-oligomerization of four 1-aziridineethanol units is the most favorable process, leading to the formation of the 12-membered cyclen-type macrocycle, H(4)L(1) (1,4,7,10-tetrakis(2-hydroxyethyl)-1,4,7,10-tetraaza-cyclododecane). Ring-opening cyclo-oligomerization of 1-aziridineethanol in the presence of Ln(III) ions produces self-assembled mononuclear, tetranuclear, and pentanuclear compounds of H(4)L(1). In the presence of ethylenediamine, oligomerization of 1-aziridineethanol results in a dinuclear complex of an acyclic poly(amino-alkoxide) H(2)L(2). The coordinative unsaturation of (i) the alkoxy sites of [H(x)L(1)](x)(-)(4) (where x < 4) and (ii) Ln(III) ions in coordination numbers less than nine are critical factors in the formation of the polynuclear Ln(III) complexes. The identities of mononuclear, dinuclear, tetranuclear, and pentanuclear complexes herein discussed were established by X-ray crystallography.  相似文献   

18.
The preparation and characterization of mononuclear complexes of the dinucleating 24-membered hexazadithiophenolate macrocycles H2L2 and H2L3 and their open-chain N3S2 analogues H2L4 and H2L5 are reported. The highly crystalline compounds [Ni(L4)] (4), [Ni(L5)] (5), [Co(L5)] (6), [NiH2(L2)]2+ (7), [ZnH2(L2)]2+ (8), and [NiH2(L3)]2+ (9) could be readily prepared by stoichiometric complexation reactions of the hydrochlorides of the free ligands with the corresponding metal(II) dichlorides and NEt3 in methanolic solution. All complexes were characterized by X-ray crystallography. Monometallic complexes 4-6 of the pentadentate ligands H2L4 and H2L5 feature distorted square pyramidal MN3S2 structures (tau = 0.01 to 0.44). Similar coordination geometries are observed for the macrocyclic complexes 7-9 of the octadentate ligands H2L2 and H2L3. The two hydrogen atoms in 7-9 are attached to the noncoordinating benzylic amine functions and are hydrogen bonded to the metal-bound thiophenolate functions. A comparison of the structures of 4-9 reveals that the macrocycles L2 and L3 have a rather flexible ligand backbone that do not confer unusual coordination geometries on the metal ions. We also report on the ability of the monometallic complexes 7 and 8 to serve as starting materials for the preparation of dinuclear complexes.  相似文献   

19.
The templated synthesis of organic macrocycles containing rings of up to 96 atoms and three 2,2′‐bipyridine (bpy) units is described. Starting with the bpy‐centred ligands 5,5′‐bis[3‐(1,4‐dioxahept‐6‐enylphenyl)]‐2,2′‐bipyridine and 5,5′‐bis[3‐(1,4,7‐trioxadec‐9‐enylphenyl)]‐2,2′‐bipyridine, we have applied Grubbs’ methodology to couple the terminal alkene units of the coordinated ligands in [FeL3]2+ complexes. Hydrogenation and demetallation of the iron(II)‐containing macrocyclic complexes results in the isolation of large organic macrocycles. The latter bind {Ru(bpy)2} units to give macrocyclic complexes with exocyclic ruthenium(II)‐containing domains. The complex [Ru(bpy)2(L)]2+ (isolated as the hexafluorophosphate salt), in which L=5,5′‐bis[3‐(1,4,7,10‐tetraoxatridec‐12‐enylphenyl)]‐2,2′‐bipyridine, undergoes intramolecular ring‐closing metathesis to yield a macrocycle which retains the exocyclic {Ru(bpy)2} unit. The poly(ethyleneoxy) domains in the latter macrocycle readily scavenge sodium ions, as proven by single‐crystal X‐ray diffraction and atomic absorption spectroscopy data for the bulk sample. In addition to the new compounds, a series of model complexes have been fully characterized, and representative single‐crystal X‐ray structural data are presented for iron(II) and ruthenium(II) acyclic and macrocyclic species.  相似文献   

20.
Reaction of 4-tert-butyl-2,6-diformylphenol with (1R,2R)- or (1S,2S)-1,2-diaminocyclohexane in the presence of 1 equivalent of Zn(2+) ions leads to selective formation of a chiral 2+2 macrocycle. Application of 0.5 equivalent of Zn(2+) ions under the same conditions leads to selective formation of a chiral 3+3 macrocycle, which forms a cavitand-shaped trinuclear double-decker complex with Zn(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号