首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
通过化学浴和连续离子层沉积法构筑了BiVO4/CdS和CdS/BiVO4两种S型异质结薄膜光电极. 利用扫描电子显微镜(SEM)、 X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)以及电化学阻抗谱(EIS)对其形貌、 结构和光电性能进行了表征, 测试了两种薄膜电极的光催化和光电催化产氢性能. 结果表明, CdS和BiVO4之间形成S型异质结, BiVO4/CdS表现出最佳的光催化产氢性能, 而CdS/BiVO4表现出最佳的光电催化产氢性能. 借助表面光电压技术探究了两种薄膜电极中S型异质结内建电场的形成过程和载流子传输的机制.  相似文献   

2.
通过金属有机物分解法(MOD)协同光电化学沉积法, 将p型氧化物半导体CuBi2O4沉积在BiVO4纳米薄膜上, 形成包覆性异质结结构, 制备了一种新型p-n异质结光阳极n-BiVO4/p-CuBi2O4, 用于太阳能光电化学(Photoelectrochemical, PEC)水分解. 研究结果表明, 在1.23 V(vs. RHE)电势下, BiVO4/CuBi2O4 异质结光阳极表现出优良的PEC水氧化性能, 光电流密度达到2.8 mA/cm2, 负载磷酸钴(Co-Pi)的BiVO4/CuBi2O4/Co-Pi光电极, 光电流密度达到4.45 mA/cm2, 分别为BiVO4电极光电流密度的3.1倍和4.9倍. X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)、 电化学阻抗谱(EIS)和能级结构图等结果也证实, BiVO4/CuBi2O4和BiVO4/CuBi2O4/Co-Pi复合电极材料在内建电场和能带弯曲作用下, 光吸收特性增强, 载流子界面转移电阻减小, 具有良好的光电化学性能与稳定性.  相似文献   

3.
本工作通过修饰TiO2制备半导体复合膜,提高其光吸收和光电化学性能,以期应用于光生阴极保护。先采用阳极氧化法在Ti表面制备TiO2纳米管阵列膜,再应用水热处理法在膜表面沉积NiO纳米颗粒,形成具有异质结构纳米管复合膜。利用扫描电子显微镜、X-射线衍射、X-射线光电子能谱、紫外-可见吸收光谱、光致发光谱和光电化学技术对制备的纳米膜进行表征。结果表明,与纯TiO2纳米管膜比较,NiO/TiO2纳米管复合膜的光吸收扩展到可见光区。白光照射下,其在0.5 mol·L?1 KOH和1 mol·L?1 CH3OH混合液中的光电流密度达到176μA·cm?2,是纯TiO2纳米管膜的2倍。复合膜具有良好的光生阴极保护作用,与0.5 mol·L?1 NaCl溶液中的403不锈钢耦连后,可使其电极电位下降440 mV,在光照2.5 h再转为暗态后,因具有电荷储存能力还可继续提供约15.5 h的阴极保护效应。  相似文献   

4.
采用浸渍法对TiO2纳米管电极进行Zn2+、Fe3+、Cu2+离子的掺杂改性,并进行了各种性能表征.扫描电镜(SEM)及X射线衍射光谱(XRD)结果表明,金属离子掺杂后的TiO2纳米管电极依然保持了良好的表面形态及锐钛矿晶型,纳米管的直径为60-100 nm,其晶面主要为101面;可见紫外漫反射光谱(DRS)分析表明,进行掺杂的TiO2纳米管电极的光学性质有不同程度的改变,Zn2+、Fe3+和Cu2+掺杂的TiO2纳米管电极的禁带宽度分别为3.37 eV3、.14 eV、2.86 eV.这表明掺Cu2+的TiO2纳米管电极的吸收边带发生了明显的红移.  相似文献   

5.
使用金属辅助化学刻蚀(MACE)法与水热法,改变贵金属粒子的刻蚀时间,制备不同n型多孔硅/TiO_2纳米线光阳极。通过扫描电镜(SEM)和X射线衍射仪(XRD)对光阳极样品进行表征,结果显示多孔硅宏孔的尺寸会随着刻蚀时间延长而增大,由0.1μm变化到0.4μm,多孔硅表面长有TiO_2纳米线为金红石相及少量锐钛矿相。测试结果显示刻蚀35 min的多孔硅/TiO_2样品具有最高的减反射率,在模拟太阳光下具有较高的光电流(光电流密度)活性,且在1.5 V外加偏压下具有最高的光电催化活性。这是由于刻蚀35 min的多孔硅基底具有优异的减反射性能,同时多孔硅与Ti O_2纳米线复合形成光阳极之后具有异质结效应和窗口效应,使得多孔硅/TiO_2纳米线光阳极具有优异光电化学性能。  相似文献   

6.
采用连续离子层吸附法(SILAR)沉积CdS制备type-Ⅱ异质结TiO2/CdS光阳极,用光电化学沉积法在TiO2/CdS表面沉积催化剂(Co-Pi)得到TiO2/CdS/Co-Pi水氧化光阳极。通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)仪等对样品结构及组成进行分析,证明CdS与Co-Pi已成功负载在TiO2表面。用已制备的光阳极在中性溶液中模拟水氧化测试,在较低外偏压(0 V(vs Ag/AgCl))和无电子牺牲剂的情况下,即使在可见光照射下,依然得到较高的初始光电流和稳定光电流,分别为1.3和0.5 mA·cm-2,表明制备的光阳极可以在可见光照下有效地驱动水氧化反应。光电化学池的工作原理为,CdS吸收光子产生光生电子-空穴,TiO2和Co-Pi分别传输电子和空穴,空穴进行水氧化,电子转移到阴极完成质子还原。  相似文献   

7.
制备了基于不同厚度(100~500 nm)多孔TiO2层的钙钛矿太阳能电池, 并用SEM、XRD、紫外-可见吸收谱、电压-电流曲线、电化学阻抗谱进行了表征. 研究发现, 多孔TiO2薄膜厚度对电池性能有很大影响, 即随着多孔TiO2薄膜厚度的增加, 短路电流略有提高, 而开路电压和填充因子呈下降趋势;但同时, 较厚的多孔TiO2薄膜可有效减弱滞回现象. 进一步采用电化学阻抗谱和暗态电流-电压曲线研究了载流子复合. 电化学阻抗谱表明, 膜厚增加会增大载流子复合但不会改变二极管理想因子. 通过拟合暗态电流-电压曲线得到反向饱和电流, 随着膜厚增加, 反向饱和电流会增大, 从而加剧了载流子复合. 通过优化多孔TiO2薄膜厚度, 基于150 nm多孔TiO2薄膜钙钛矿电池的认证效率达到15.56%.  相似文献   

8.
以电纺TiO2纳米纤维为基质, 柠檬酸为软模板, 采用一步水热法制备了具有三维立体网状结构的稀土Dy 3+掺杂YVO4/TiO2复合纤维. 通过X射线衍射、 扫描电子显微镜、 X射线光电子能谱、 N2吸附-脱附、 紫外-可见漫反射光谱及荧光光谱等手段对材料的组成、 表面形貌和性能进行表征, 以光分解水产氢实验考察其光催化活性. 结果表明, Dy 3+∶YVO4纳米枝与TiO2纳米纤维相互交联构筑的纳米纤维网具有大比表面积, 可提供更多活性位点, 改善了多相光催化反应的传递过程; 稀土Dy 3+掺杂的YVO4与TiO2复合形成异质结相互促进, 在拓宽光谱响应范围、 提高太阳光利用率的同时使光生电子-空穴对得到较好分离, 从而提高了样品的光催化活性. 模拟太阳光照射下, Dy 3+∶YVO4/TiO2复合纤维光催化产氢速率达到8.63 mmol· h -1·g -1, 是纯TiO2纳米纤维的10倍.  相似文献   

9.
马智烨  叶丽  吴雨桓  赵彤 《化学学报》2021,79(9):1173-1179
为了提高TiO2在可见光下的光催化活性, 采用聚合物前驱体法制备了B,N共掺杂的SnO2/TiO2(B,N-SnO2/TiO2)粉体型光催化剂. 进一步为了提高光催化剂的实用性, 通过浸渍-裂解法制备了氧化铝纤维毡负载的B,N-SnO2/TiO2光催化剂. 利用X射线衍射仪、场发射扫描电子显微镜、场发射透射电子显微镜、X射线光电子能谱、比表面积分析仪、紫外-可见分光光度计等对其进行了表征. 以氧氟沙星水溶液为模拟污染物, 考察了B,N-SnO2/TiO2粉体型光催化剂和负载型光催化剂的可见光催化活性及稳定性. 结果表明, 该粉体型光催化剂在可见光下光照15 min, 对氧氟沙星的降解率可达98.3%. 负载型光催化剂也表现出了良好的光催化性能及可重复性和稳定性, 在21次重复使用后光催化性能几乎不发生变化.  相似文献   

10.
以NH4Cl为气体模板吹制双氰胺制备g-C3N4纳米片, 并将其负载于Pt/TiO2纳米管阵列(Pt/TiO2 NTs)上, 制备了一种新型的Z型g-C3N4/Pt/TiO2NTs复合电极材料. 通过扫描电子显微镜、 X射线衍射和X射线光电子能谱对该材料的结构进行了表征, 采用电化学和光电化学方法研究了材料的性能. 研究结果显示, 在可见光照射下, g-C3N4/Pt/TiO2 NTs复合材料具有高效的光电氧化甲醇的性能. 该复合材料的高性能主要归因于以下两点: (1) g-C3N4与Pt/TiO2NTs的结合有效扩展了其在可见光范围的吸收; (2) Z型电荷转移保留了具有强氧化能力的空穴和强还原能力的电子, 从而使光生中间体作用于电催化过程增强了甲醇氧化效率.  相似文献   

11.
吴涛  陶杰  邓杰  汤育欣  朱宏  高朋 《物理化学学报》2010,26(11):3087-3094
采用直流磁控溅射的方法在柔性不锈钢基底(50μm)上沉积纯钛薄膜,后在NaOH碱溶液中经水热法制备了非钛基大长径比的一维TiO2纳米线薄膜,并通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、透射电子显微镜(TEM)以及光电化学的方法对不锈钢基一维TiO2纳米线薄膜进行了表征.结果表明,纯钛薄膜的致密度、结晶性能以及与基底的结合强度均随衬底温度的升高而加强;在10mol·L-1NaOH浓度下,生长一维TiO2纳米线结构的适宜温度为130-150℃;TiO2纳米线长度达到几个微米,直径在10-30nm之间,并且相互交叉生长,构成一个三维网络结构.此外,在Na2SO4溶液中对TiO2纳米线薄膜进行了线性扫描和瞬态光电流测试,结果表明,一维TiO2纳米线薄膜电极较TiO2纳米颗粒电极表现出更优异的光电化学性能.这种磁控溅射与水热反应相结合的方法,为非钛异质基底上制备一维TiO2纳米线薄膜提供了新的思路.  相似文献   

12.
本文采用改进的溶胶-凝胶法制备了具有锐钛矿晶型结构和较小晶粒尺寸的TiO2-SiO2溶胶,并以聚苯乙烯(PS)小球为模板,采用旋涂法制备了新型大孔TiO2-SiO2复合薄膜,探究了煅烧温度、不同硅钛比以及溶胶添加量对所制备的大孔薄膜形貌及光催化活性的影响,并考察了该薄膜真空活化前后(Ti3+掺杂后)在紫外及模拟太阳光下光催化降解有机污染物罗丹明B的活性。通过Raman、DRS、SEM、EPR等方法对薄膜进行表征,发现制备的复合薄膜具有高透明度、良好附着力及优异的光催化活性。  相似文献   

13.
分别以金红石相和锐钛矿相TiO2为载体, 采用液相还原-沉积法制备了Cu2O/TiO2催化剂. 采用氮气物理吸附-脱附(N2-physisorption)实验、 氢气程序升温还原(H2-TPR)、 X射线衍射(XRD)、 X射线光电子能谱(XPS)、 CO红外光谱(CO-IR)及高分辨透射电子显微镜(HRTEM)等技术, 研究了不同晶相TiO2载体对Cu2O/TiO2结构及其催化甲醛乙炔化反应性能的影响. 结果表明, 以金红石相TiO2为载体的催化剂炔化活性明显高于以锐钛矿相TiO2为载体的催化剂, 原因在于金红石相TiO2主要暴露(110)晶面, 其与铜物种的配位环境及较高的空位密度形成了更多的Cu—O—Ti结构物种, 表现为Cu2O与TiO2之间强的相互作用. 这导致Cu2O高效转变为乙炔亚铜活性物种, 并保持了较高的分散度与稳定性, 抑制了过度还原物种金属Cu的生成, 进而使催化剂表现出较高的催化性能.  相似文献   

14.
TiO2异相结主要通过高温方法制备,所制备材料的形貌和组成较难控制,尤其是在较低温度下一步制备一维TiO2异相结仍具有一定的挑战性。采用简单、方便的一步水热法,在较低温度下(180℃)制备了一维纳米TiO2异相结材料。X射线衍射(XRD)和高分辨透射电镜(HRTEM)分析表明,制备的材料以一维金红石相TiO2纳米棒(长度:(400±50) nm,直径:(60±5) nm)为基本结构,粒径分布均匀的锐钛矿相TiO2纳米粒子(直径:(9.5±0.5) nm)高密度、单分散地负载在纳米棒上。通过控制水热反应时间成功调控了异相结中锐钛矿相TiO2的含量(20%~50%),进而实现了其光催化降解HCHO性能的调控。实验结果表明,当锐钛矿相TiO2的含量为33%时(TiO2-24,水热时间24 h制备的样品),异相结光催化剂表现出最佳的HCHO降解性能:在低光强LED灯(波长为365 nm,光强为12.26 mW·cm  相似文献   

15.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备.通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能.结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P.不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

16.
有机金属化学汽相沉积(MO-CVD)技术是一种新型薄膜材料制备技术,它优于目前通常采用的一般CVD和物理方法[1]。主要优点:采用金属有机化合物为物质源,选择的范围比较大,其中含有易断裂的M-C键,易发生气相热分解氧化反应,成膜温度比较低,反应副产物仅有易挥发的碳氢化合物,使成膜环境无污染,易获得优质膜。因该技术是化学成膜,排除了物理方法中固有的不易控制化学计量的问题,易获得优质膜层。  相似文献   

17.
利用微波辅助溶剂热法合成了In-Si共改性的TiO2光催化剂.粉末X射线衍射(XRD)、激光拉曼(Raman)光谱、N2吸脱附(BET)、X射线光电子能谱(XPS)、光致发光(PL)光谱和紫外-可见漫反射光谱(UV-Vis DRS)等实验表明,尽管掺杂和改性后TiO2结晶度略有降低,但不影响光催化剂锐钛相的形成.Si掺杂入TiO2晶格使颗粒变小,比表面积变大.In不能进入TiO2晶格,在TiO2表面形成了In2O3.罗丹明B(RhB)降解实验显示,In-Si共改性TiO2表现出很高的紫外和可见光催化活性,Si:In:Ti的摩尔比为0.03:0.02:1的样品(IST-2)光催化活性最高,紫外光下3 min即可将RhB降解完全,可见光下120 min RhB降解率为97%,这是由材料的高表面积,In2O3-TiO2复合半导体之间高效电荷转移及染料敏化等共同作用所致.对于苯酚,光催化降解则相对缓慢,700 min内尚不能降解完全.  相似文献   

18.
采用共沉淀法制备TiO2-SnO2固溶体,浸渍法负载CeO2得到一系列xCeO2/TiO2-SnO2负载型催化剂,在模拟NH3选择性催化还原NOx(NH3-SCR)反应条件下考察催化剂低温脱硝活性。通过X射线衍射(XRD)、比表面积测定(BET)、程序升温还原(H2-TPR)、程序升温脱附(NH3-TPD)、高分辨率透射电子显微镜(HRTEM)、原位漫反射傅里叶变换红外光谱(in situ DRIFTS)等表征技术,研究了氧化铈负载后催化剂的微观结构、表面物种的存在状态、表面酸位等表面性质及NH3吸附特性。结果表明,Ce:Ti物质的量比为0.1时,催化剂催化脱硝反应活性最高,同时具有较宽的温度窗口(250~300℃)和热稳定性;铈的过量负载会导致催化剂比表面积减小、活性窗口变窄,同时其氧化还原能力和NH3吸附能力也减弱。NH3-TPD结果显示,CeO2的负载导致催化剂NH3在弱酸及中等酸位的吸附显著增强,与催化剂NH3-SCR最佳反应物温度降低有关。in situ DRIFTS表明,xCeO2/TiO2-SnO2催化剂的Lewis酸位和Brønsted酸位强度均明显增强,同时,在1657~1666cm-1处出现新的Brønsted酸位,参与SCR反应的主要物质是NH4+分子。  相似文献   

19.
Coaxial nanocable consisted of p-type Cu2O nanowires and n-type TiO2 nanotubes arrays was prepared in the porous anodic aluminum oxide(AAO) template via the sol-gel method and subsequent electrodeposition method. X-ray diffraction analysis identified an anatase structure of the TiO2 nanotubes and cubic structure of the Cu2O nanowires. The obtained samples were also characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and energy dispersive X-ray spectroscopy(EDS). The diffrence of open circuit potential of the coaxial nanocable electrode was larger than that of the TiO2 nanotubes electrode under ultraviolet illumination, which means doping with Cu2O could improve the photovoltage effectively. Meanwhile, nanocable arrays exhibited a high activity for photodegrading Rhodamine B under Xe lamp irradiation and the photocatalysis degradation efficiency was up to 98.69% after degradation for 7 h. The enhanced photocatalytic activity could be attributed to the high migration efficiency of photoinduced electrons, which may suppress the charge recombination effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号