首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement traceability is universally recognised as one of the basic prerequisites for comparability of results obtained in different laboratories and is a basic aspect of metrological sciences such as analytical chemistry. This requirement is underscored by the increasing adoption of standards and measurement quality systems, such as laboratory accreditation against ISO/IEC 17025. Testing laboratories ensure traceability of their measurement results by using appropriate reference standards for calibration of instruments and control of measurement processes. For routine work in the field of water analysis, these standards are usually commercial solutions or in-house solutions prepared from pure products. Therefore, laboratories should demonstrate that their use of reference standards is appropriate and sufficient, which can be done by participation in an appropriate proficiency-testing scheme. The paper reports how measurement traceability of results from field laboratories (nitrite nitrogen, nitrate nitrogen, chloride and sulphate; all in water) can be demonstrated by participation in a proficiency-testing scheme based on reference values.  相似文献   

2.
Several reference materials (RMs) and certified reference materials (CRMs) are widely used in Romania as measurement standards in different spectrochemical measurements. Among them, single element standard solution certified for their mass concentration play a key role in ensuring the required traceability of results expressed in this measurement unit. A short review of the locally available elemental RMs and CRMs used in atomic spectrometry or in other analytical techniques where aqueous standard solutions are required (usually called RMs or CRMs for spectrometry) is given. The experience of the INM in preparation and certification of such materials is described. Some aspects regarding their use for ensuring the accuracy and for confirmation of the traceability of analytical measurements, especially through calibration and metrological validation of main instrument performances, are discussed.  相似文献   

3.
Several reference materials (RMs) and certified reference materials (CRMs) are widely used in Romania as measurement standards in different spectrochemical measurements. Among them, single element standard solution certified for their mass concentration play a key role in ensuring the required traceability of results expressed in this measurement unit. A short review of the locally available elemental RMs and CRMs used in atomic spectrometry or in other analytical techniques where aqueous standard solutions are required (usually called RMs or CRMs for spectrometry) is given. The experience of the INM in preparation and certification of such materials is described. Some aspects regarding their use for ensuring the accuracy and for confirmation of the traceability of analytical measurements, especially through calibration and metrological validation of main instrument performances, are discussed.  相似文献   

4.
The accuracy and uncertainty of the coulometric measurement results of reference materials for acidimetric titration were examined in this study. The results for amidosulfuric acid and potassium hydrogen phthalate are presented. The uncertainty was investigated by examining the dependency on the sample size and on the electrolysis current. Changes in the titration parameters did not result in any significant effects on the titration results. Acidimetric standards with the certified value linked to the SI were developed. In addition, the intercomparison of acidimetric standards was carried out by gravimetric titration, and the relationship between our coulometric results was determined. Furthermore, due to recent internationalization, not only the traceability to the SI but also the relationship and consistency of their analytical data have gained increasing importance. Our results were validated using certified reference materials (CRMs) obtained from different National Metrology Institutes (NMIs), and their relationships are presented. Presented at -- “BERM-10” -- April 2006, Charleston, SC, USA.  相似文献   

5.
 Economic and technological change, regional and international trade and the globalisation of industry have led to intense pressures for improvements to analytical quality, reliability and comparability. Of central importance are national traceability structures connecting chemical measurements in the field with internationally accepted measurement units and their practical realisations. Australia has a developed physical and engineering measurement system, a legislative framework for analytical traceability and, in the National Association of Testing Authorities, a recognised laboratory accreditation system. The need has been identified to develop the technical capability to perform matrix-independent reference measurements for the certification of traceable reference materials, useable as practical analytical etalons to establish metrological control systems in field measurements for amounts of substance. Recently, a unique collaborative consortium has proposed a National Analytical Reference Laboratory (NARL). The NARL is designed to be a metrological mass spectrometry facility for the transference of measurement units to more widely useable chemical measurement standards and reference materials. Received: 10 October 1995 Accepted: 26 October 1995  相似文献   

6.
A current interest in chemistry concerns traceability of analytical measurements to the International System of Units (SI) and the estimation of their uncertainties in accordance with principles of metrology, that is, measurement science. “Primary methods of measurement” achieve traceability to SI directly without intermediate reference standards or materials and without significant empirical correction factors. Isotope-dilution mass spectrometry should be regarded as such a method. It has the potential of smallest presently achievable uncertainties for analytical measurements directly or for the certification of reference materials including those with abnormal isotopic composition. A simple explanation of the method including its basic equations is given. Full uncertainty estimation is emphasized in terms of these equations. The wider use of concepts of metrology in chemistry is discussed.  相似文献   

7.
The availability of natural matrix reference materials evaluated for trace element content has resulted in their widespread use as standards (i.e., calibration materials; comparators) for instrumental neutron activation analysis (INAA). Due to the uncertainties associated with their certified values, the limited number available, and the relative matrix independence of INAA, these reference materials are more properly utilized as quality assessment materials, after calibration of the INAA analytical system with true primary standards. Terminology is defined, the use of matrix reference materials to evaluate the analytical system is discussed, techniques for the accurate preparation of primary standards for trace element analyses are reviewed, and necessary precautions in the accurate comparison of samples to standards are presented.  相似文献   

8.
Since the uncertainty of each link in the traceability chain (measuring analytical instrument, reference material or other measurement standard) changes over the course of time, the chain lifetime is limited. The lifetime in chemical analysis is dependent on the calibration intervals of the measuring equipment and the shelf-life of the certified reference materials (CRMs) used for the calibration of the equipment. It is shown that the ordinary least squares technique, used for treatment of the calibration data, is correct only when uncertainties in the certified values of the measurement standards or CRMs are negligible. If these uncertainties increase (for example, close to the end of the calibration interval or shelf-life), they are able to influence significantly the calibration and measurement results. In such cases regression analysis of the calibration data should take into account that not only the response values are subjects to errors, but also the certified values. As an end-point criterion of the traceability chain destruction, the requirement that the uncertainty of a measurement standard should be a source of less then one-third of the uncertainty in the measurement result is applicable. An example from analytical practice based on the data of interlaboratory comparisons of ethanol determination in beer is discussed. Received: 5 October 2000 Accepted: 3 December 2000  相似文献   

9.
The Eurachem-CITAC Guide Quantifying Uncertainty in Analytical Measurement was put into practice in a public laboratory devoted to environmental analytical measurements. In doing so due regard was given to the provisions of ISO 17025 and an attempt was made to base the entire estimation of measurement uncertainty on available data from the literature or from previously performed validation studies. Most environmental analytical procedures laid down in national or international standards are the result of cooperative efforts and put into effect as part of a compromise between all parties involved, public and private, that also encompasses environmental standards and statutory limits. Central to many procedures is the focus on the measurement of environmental effects rather than on individual chemical species. In this situation it is particularly important to understand the measurement process well enough to produce a realistic uncertainty statement. Environmental analytical methods will be examined as far as necessary, but reference will also be made to analytical methods in general and to physical measurement methods where appropriate. This paper describes ways and means of quantifying uncertainty for frequently practised methods of environmental analysis. It will be shown that operationally defined measurands are no obstacle to the estimation process as described in the Eurachem/CITAC Guide if it is accepted that the dominating component of uncertainty comes from the actual practice of the method as a reproducibility standard deviation.  相似文献   

10.
Kadis R 《The Analyst》2007,132(12):1272-4; discussion 1275-7
Treatment of bias is an important issue relating to analytical quality. Recently, G. E. O'Donnell and D. B. Hibbert (Analyst, 2005, 130, 721) recommended to always correct analytical results for 'run bias' determined by a single analysis of a certified reference material (CRM) in each analytical run. In the authors' opinion, this is necessary for the results obtained to be comparable from run to run. It is argued here that such a recommendation is logically inconsistent and stems from misinterpretation of measurement uncertainty as being estimated under repeatability conditions. The fundamental principle underlying the measurement uncertainty methodology is that all relevant sources of error should be taken into account, which results in overall uncertainty assessment and thus provides a means for a global comparability of measurement and test results. The local, i.e. run-to-run, comparability is not a factor if analytical results are interpreted on the basis of their associated uncertainty.  相似文献   

11.
In order to perform high accuracy analytical measurements most analytical techniques require some form of calibration using standards of the same quantity as that being measured. The highest accuracy calibration standards are those prepared by mass (gravimetrically) as opposed to by volume (volumetrically). The use of gravimetrically prepared standards to calibrate analytical techniques that rely on fixed volume injections can cause systematic errors, even when the analytical technique does not suffer from a chemical matrix interference. The origin of these errors is explained and is demonstrated experimentally for the analysis of sulphate in synthetic seawater samples, and the measurement of the anionic content of particulate matter following extraction with water and wetting agents; where average measurement biases of +2.7 and -3.2%, respectively, were observed. Proposals are offered for methods to overcome this 'physical matrix effect'.  相似文献   

12.
In stable isotope ratio mass spectrometry (IRMS), the stable isotopic composition of samples is measured relative to the isotopic composition of a working gas. This measured isotopic composition must be converted and reported on the respective international stable isotope reference scale for the accurate interlaboratory comparison of results. This data conversion procedure, commonly called normalization, is the first set of calculations done by the users. In this paper, we present a discussion and mathematical formulation of several existing routinely used normalization procedures. These conversion procedures include: single-point anchoring (versus working gas and certified reference standard), modified single-point normalization, linear shift between the measured and the true isotopic composition of two certified reference standards, two-point and multi-point linear normalization methods. Mathematically, the modified single-point, two-point, and multi-point normalization methods are essentially the same. By utilizing laboratory analytical data, the accuracy of the various normalization methods (given by the difference between the true and the normalized isotopic composition) has been compared. Our computations suggest that single-point anchoring produces normalization errors that exceed the maximum total uncertainties (e.g. 0.1 per thousand for delta(13)C) often reported in the literature, and, therefore, that it must not be used for routinely anchoring stable isotope measurement results to the appropriate international scales. However, any normalization method using two or more certified reference standards produces a smaller normalization error provided that the isotopic composition of the standards brackets the isotopic composition of unknown samples.  相似文献   

13.
 National measurement systems are infrastructures to ensure, for each nation, a consistent and internationally recognised basis for measurement. Such complex systems have historical, technical, legal, organisational and institutional aspects to connect scientific metrology with practical measurements. Underlying any valid measurement is a chain of comparisons linking the measurement to an accepted standard. The ways the links are forged and the etalons (measurement standards) to which they connect are defining characteristics of all measurement systems. This is often referred to as traceability which aims at basing measurements in common measurement units – a key issue for the integration of quantitative chemical analysis with the evolving physical and engineering measurement systems. Adequate traceability and metrological control make possible new technical capabilities and new levels of quality assurance and confidence by users in the accuracy and integrity of quantitative analytical results. Traceability for chemical measurements is difficult to achieve and harder to demonstrate. The supply of appropriate etalons is critical to the development of metrology systems for chemical analysis. An approach is suggested that involves the development of networks of specialised reference laboratories able to make matrix-independent reference measurements on submitted samples, which may then be used as reference materials by an originating laboratory using its practical measurement procedures. Received: 31 July 1995 Accepted: 19 August 1995  相似文献   

14.
The determination of isotope ratios of non-exchangeable hydrogen in tree-ring cellulose is commonly based on the nitration of wood cellulose followed by online high-temperature pyrolysis and isotope ratio mass spectrometry measurement of cellulose nitrate samples. The application of this method requires a proper calibration using appropriate reference materials whose delta(2)H values have been reliably normalized to the V-SMOW/SLAP scale. In our study, we achieve this normalization by a direct alternating measurement of reference waters (V-SMOW and SLAP) and three cellulose nitrates chosen as reference materials. For that purpose, both water and solid organic samples are introduced into the pyrolysis reactor by silver capsule injection. The analytical precision of the water measurement using the capsule method is +/-1.5 per thousand. The hydrogen isotopic composition of three cellulose nitrate standards measured ranges from -106.7 to -53.9 per thousand. The standard deviation of the calculated means from five measurement periods of those standards is better than 1 per thousand. Twenty-four different measurements of the hydrogen isotope composition of cellulose nitrate were evaluated in order to assess the precision of the described method. We obtained an analytical precision of +/-3.0 per thousand as representative for the 95% confidence interval applicable for routine measurements of cellulose nitrate samples. Evidence was found for significant differences in the behavior of cellulose nitrate and PE foil during the pyrolitic conversion that emphasizes the need for a proper calibration of the routine measurements. This calibration can only be successful if the reference materials used have a very similar chemical composition and undergo the same preparation procedure as the samples.  相似文献   

15.
Improved reliability of pH measurements   总被引:2,自引:0,他引:2  
Measurements of pH are performed on a large scale at laboratory level, and in industry. To meet the quality-control requirements and other technical specifications there is a need for traceability in measurement results.The prerequisite for the international acceptance of analytical data is reliability. To measure means to compare. Comparability entails use of recognised references to which the standard buffer solutions used for calibration of pH meter-electrode assemblies can be traced.The new recommendation on the measurement of pH recently published as a provisional document by the International Union on Pure and Applied Chemistry (IUPAC) enables traceability for measured pH values to a conventional reference frame which is recognised world-wide. The primary method for pH will be described.If analytical data are to be accepted internationally it is necessary to demonstrate the equivalence of the national traceability structures, including national measurement standards. For the first time key comparisons for pH have been performed by the Consultative Committee for Amount of Substance (CCQM, set up by the International Bureau of Weights and Measures, BIPM) to assess the equivalence of the national measurement procedures used to determine the pH of primary standard buffer solutions. The results of the first key comparison on pH CCQM-K9, and other international initiatives to improve the consistency of the results of measurement for pH, are reported.  相似文献   

16.
17.
郭鹤男  杨学东  刘军  郑文凤 《色谱》2012,30(7):690-695
在高效液相色谱-质谱分析指导下,针对性地分离制备了黄芩药材中系列黄酮成分对照品。首先对黄芩药材乙醇提取物进行液相色谱-质谱分析,获得各色谱峰的保留时间、紫外光谱和质谱特征。经波谱数据解析结合文献对比,鉴定了黄芩药材中的19种黄酮类成分。然后根据液相色谱-质谱分析结果和文献,设计了目标成分对照品的制备流程,采用低压制备柱色谱法依次制备了黄芩苷、汉黄芩苷、黄芩素、汉黄芩素和千层纸素A共5种黄酮类成分的对照品。结果表明这5种黄酮类成分对照品的纯度均大于98%。该方法可用于针对性地快速分离制备中药中的化学成分。  相似文献   

18.
Results that reference SI units rarely pose problems in chemical measurement because traceable standards, with uncertainties derived from a chain of calibrations from the SI, are readily available at the analyst??s bench. These uncertainties are nearly always far smaller than that required for fitness for purpose in the analytical result. Moreover, the greater part of the uncertainty in a typical result is not derived from primary measurements traceable to the SI but from recovery problems and matrix effects. Even so, the incidence of wildly inaccurate results stems not from this uncertainty but from ??blunders??, deviations from the correct procedure. Attention to traceability beyond that employed by any competent analyst therefore cannot reduce the uncertainty. Furthermore, there is no rational reason to reduce the uncertainty if the result is already fit for purpose. The current focus on traceability is distracting analysts from the more pressing task of eliminating blunders.  相似文献   

19.
The aim of the International Measurement Evaluation Programme (IMEP) is to give an objective picture of state-of-the-practice analytical measurements by comparing them to a reference value obtained by a primary method of measurement. The referencevalue is therefore as traceable to the SI system of measurements as can presently be achieved and is independent of human or political decisions. Thus a large scale field test is made to achieve (international) comparability of measurements by comparing them with an independent metrologically established value. In the fourth measurement round, IMEP-4, three trace elements, Li, Cu and Zn, at three different levels in (bovine) serum were measured by about 12 participating laboratories using their routine methods. The (coded) results are graphically reported and compared to certified reference values established by an isotope-specific method, isotope dilution mass spectrometry, defined as a primary method of measurement by the Consultative Committee on Amount of Substance. Results indicate a spread of more than ±50%, asymmetrically distributed around the reference value with its own uncertainty range, although the self-declared accuracy of the laboratories was 5–10%. Self-assessment by participants of their analytical capabilities does not show a high correlation between self-rating ("more experienced" or "less experienced") and actual performance. In the way they have been applied, all methods seem to produce results of approximately the same quality.  相似文献   

20.
A proposed sampling constant for use in geochemical analysis   总被引:1,自引:0,他引:1  
Ingamells CO  Switzer P 《Talanta》1973,20(6):547-568
The error in a determination of an element in a rock or mineral sample depends on the analytical error, the weight of sample analysed, and the nature and history of the laboratory sample. The most probable result is not independent of the weight of sample analysed. This is due to the fact that trace constituents often reside in isolated mineral grains. The chance of such mineral grains appearing in any one analysed sample becomes more remote as the sample weight decreases, even when rock or mineral samples are reduced to fine powders. Such subsampling errors can be controlled through the use of sampling constants. These may be estimated by several procedures, including repetitive determination of a constituent and physical measurement of relevant sample characteristics. Sampling constants can be usefully employed during the establishment and certification of reference samples or standards. When subsampling is deficient, analytical results may yield erroneously low values, sometimes with high precision. High precision never implies high accuracy; it may be a symptom of gross error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号