首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binuclear half-sandwich iridium complexes {CpIrCl2}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (3) and {CpIr[E2C2(B10H10)]}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (E = S(5a), Se(5b)) were prepared from the reaction of [CpIrCl(μ-Cl)]2 or the “pseudo-aromatic” half-sandwich iridium complex CpIr[E2C2(B10H10)] (E = S(4a), Se(4b)) with a tetrathiafulvalene (TTF) derivative 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (2) at room temperature. The complexes (3, 5a and 5b) have been fully characterized by IR and NMR spectroscopy, as well as elemental analysis. And the molecular structures of 2 and 5a were established through X-ray crystallography. It is interesting that infinite tunnels are created by repeating ‘buckled bowl’ molecules of 5a.  相似文献   

2.
3.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

4.
A new route was used to synthesize half-sandwich rhodium complexes containing both N-heterocyclic carbenes (NHC) and carborane ligands. The rhodium carbene complexes CpRh(L)[S2C2(B10H10)] (Cp = pentamethylcyclopentadienyl, L = 1,3-dimethylimidazolin-2-ylidene; 4) can be obtained from the reaction of CpRh(L)Cl2 (2) with Li2S2C2(B10H10) or from the reaction of CpRh[S2C2(B10H10)] (3) with silver-NHC complex prepared by direct reaction of an imidazolium precursor and Ag2O. Complexes 2 and 4 were characterized by IR, NMR spectroscopy, element analysis and X-ray structure analyses.  相似文献   

5.
A 18-electron complex CpIrCl[o-C6H4N(C6H3-Me-p) (CHNC6H3-Me-p)] (Cp = η5-pentamethylcyclopentadienyl) (1a) was obtained by the reaction of the lithium salt of o-C6H4N (C6H3-Me-p)(CHNHC6H3-Me-p) (L1) with [CpIrCl(μ-Cl)]2 in toluene. However, when bulkier ligands (L2 = o-C6H4N(C6H3-Me-p)(CHNHC6H3-i-Me2-2,6), L3 = o-C6H4N(C6H3-Me-p) (CHNHC6H3-i-Pr2-2,6)) were employed in the same reaction, two 16-electron complexes {CpIr[o-C6H4N(C6H3-Me-p)(CHNC6H3-i-Me2-2,6)]}+Cl (2b) and {CpIr[o-C6H4N(C6H3-Me-p)(CHNC6H3-i-Pr2-2,6)]}+Cl (3b) were formed. A 16-electron complex {CpIr [o-C6H4N(C6H3-Me-p) (CHNC6H3-Me-p)]}+SO3 CF3 (1b) bearing L1 could be achieved by the reaction of 1a with AgSO3CF3 in CH3CN solution. The molecular structures of 1a and 2b were determined by X-ray crystallography. Theoretical calculations of all the 18/16-electron species were performed to study their bonding characters and electronic properties. Electron donating effect of Cp and steric effect of anilido-imine ligand were considered as major factors in the formation of coordinative unsaturated complexes 1b, 2b, 3b.  相似文献   

6.
Abstract

Herein, we describe the utilization of isomeric pyridyl-substituted ligands featuring different coordination vectors to rationally design and construct a series of discrete organometallic assemblies with specific space conformations. In the case of tetranuclear macrocycles constructed from the ligand 3-bpb, different conformations of these assemblies with C2v and C2 h point symmetry were revealed by single-crystal X-ray diffraction. These complexes were further characterized by X-ray crystallography, 1H NMR, DOSY NMR, IR spectroscopy, and elemental analyses.  相似文献   

7.
A series of cationic, half-sandwich ruthenium complexes with the general formula [(η6-arene)RuCl(R1S-C6H4-2-CHNR2)]+ (arene = p-cymene or hexamethylbenzene; R1 = CH2Ph, iPr, or Et; R2 = aryl) have been prepared from the reaction of [(η6-arene)RuCl2]2 with various N,S-donor Schiff base ligands derived from 2-(alkylthio)benzaldehyde and several primary amines. All of the ruthenium complexes were characterized by IR, 1H NMR, electrochemistry, and UV/Vis spectroscopies. The p-cymene complexes undergo irreversible oxidations while the hexamethylbenzene complexes undergo quasi-reversible oxidations. The molecular structures of ligand 1a and complexes 4a, 4l, and 5e were determined by X-ray crystallography.  相似文献   

8.
金国新 《高分子科学》2013,31(5):760-768
A series of half-sandwich group IV metal complexes with tridentate monoanionic phenoxy-imine arylsulfide [O NS] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N = CHC 6 H 2 O)](La) and dianionic phenoxy-amine arylsulfide [O N S] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N-CH 2 C 6 H 2 O)] 2(Lb) have been synthesized and characterized.Lb was obtained easily in high yield by reduction of ligand La with excess LiAlH 4 in cool diethyl ether.Half-sandwich Group IV metal complexes CpTi[O NS]Cl 2(1a),CpZr[O NS]Cl 2(1b),CpTi[O N S]Cl(2a),CpZr[O N S]Cl(2b) and Cp * Zr[O N S]Cl(2c) were synthesized by the reactions of La and Lb with CpTiCl 3,CpZrCl 3 and Cp * ZrCl 3,and characterized by IR,1 H-NMR,13 C-NMR and elemental analysis.In addition,an X-ray structure analysis was performed on ligand Lb.The title Group IV half-sandwich bearing tridentate [O,N,S] ligands show good catalytic activities for ethylene polymerization in the presence of methylaluminoxane(MAO) as co-catalyst up to 1.58 × 10 7 g-PE.mol-Zr 1.h 1.The good catalytic activities can be maintained even at high temperatures such as 100 ℃ exhibiting the excellent thermal stability for these half-sandwich metal pre-catalysts.  相似文献   

9.
A series of neutral pyridine-based organochalcogen ligands, 2,6-bis(1-methylimidazole-2-thione)pyridine (Bmtp), 2,6-bis(1-isopropylimidazole-2-thione)pyridine (Bptp), and 2,6-bis(1-tert-butylimidazole-2-thione)pyridine (Bbtp) have been synthesized and characterized. Reactions of [Cp*M(μ-Cl)Cl]2 (Cp* = η5-pentamethylcyclopentadienyl, M = Ir, Rh) with three pyridine-based organochalcogen ligands result in the formation of the complexes Cp*M(L)Cl2 (M = Ir, L = Bmtp, 1a·Cl2; M = Rh, L = Bmtp, 1b·Cl2; M = Ir, L = Bptp, 2a·Cl2; M = Rh, L = Bptp, 2b·Cl2; M = Ir, L = Bbtp, 3a·Cl2; M = Rh, L = Bbtp, 3b·Cl2), respectively. All compounds have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of Bbtp, 1a·Cl2, 1b·Cl2, 2b·Cl2 and 3b·Cl2 have been determined by X-ray crystallography.  相似文献   

10.
Four ruthenium(II) p-cymene complexes with naphthalene-based Schiff base ligands [Ru(p-cymene)LCl] (2a2d) have been synthesized and characterized. The half-sandwich ruthenium complexes were characterized by 1H and 13C NMR spectra, elemental analyses, and infrared spectrometry. The molecular structures of 2a, 2b, and 2c were confirmed by single-crystal X-ray diffraction. Furthermore, these half-sandwich ruthenium complexes are highly active catalysts for the hydrogenation of nitroarenes to anilines using NaBH4 as the reducing agent in ethanol at room temperature.  相似文献   

11.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

12.
The cobalt dithiolene complex with the sulfonylamide-substituted Cp ligand [(C5H4-NHTs)Co{S2C2(COOMe)2}] (1, Ts = p-SO2C6H4Me) reacted with TsOH · H2O to give [(C5H4-NH2)Co{S2C2(COOMe)(H)}] (2), [(C5H4-NHTs)Co(S2C2H2)] (3) and [(C5H4-NHTs)Co{S2C2(COOMe)(H)}] (4). Complex 1 was dissolved in a basic aqueous solution, and the anion reacted with Me2SO4 to form the N-methylated product [{C5H4-N(Me)Ts}Co{S2C2(COOMe)2}] (5); the carboxylic acid complex [{C5H4-N(Me)Ts}Co{S2C2(COOMe)(COOH)}] (6) formed by a base hydrolysis. The X-ray crystal structures of complexes 4-6 and the methylsulfonylamide-substituted Cp complex [(C5H4-NHMs)Co{S2C2(COOMe)2}] (7, Ms = SO2Me) were determined. In the crystal structures of complexes 4 and 7, intermolecular hydrogen bondings of NH?O (ca. 2.1 Å) and NH?S (ca. 3.1 Å) were observed. Complex 6 showed the OH?O intermolecular hydrogen bonding (ca. 1.6 Å) of COOH moiety between two molecules, and these two molecules were assembling each other. Complexes 5 and 6 showed an intramolecular π-π interaction between the aromatic cobaltadithiolene and benzene rings, and complex 5 also has intermolecular π-π interactions between two benzene rings, and between two cobaltadithiolene rings.  相似文献   

13.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

14.
Reactions of [Cp*M(μ-Cl)Cl]2 (M = Ir, Rh; Cp* = η5-pentamethylcyclopentadienyl) with bi- or tri-dentate organochalcogen ligands Mbit (L1), Mbpit (L2), Mbbit (L3) and [TmMe] (L4) (Mbit = 1,1′-methylenebis(3-methyl-imidazole-2-thione); Mbpit = 1,1′-methylene bis (3-iso-propyl-imidazole-2-thione), Mbbit = 1,1′-methylene bis (3-tert-butyl-imidazole-2-thione)) and [TmMe] (TmMe = tris (2-mercapto-1-methylimidazolyl) borate) result in the formation of the 18-electron half-sandwich complexes [Cp*M(Mbit)Cl]Cl (M = Ir, 1a; M = Rh, 1b), [Cp*M(Mbpit)Cl]Cl (M = Ir, 2a; M = Rh, 2b), [Cp*M(Mbbit)Cl]Cl (M = Ir, 3a; M = Rh, 3b) and [Cp*M(TmMe)]Cl (M = Ir, 4a; M = Rh, 4b), respectively. All complexes have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of 1a, 2b and 4a have been determined by X-ray crystallography.  相似文献   

15.
Reactions of sodium pentaphosphacyclopentadienide NaP5 with half-sandwich iron phosphine complexes gave pentaphosphaferrocenes or ferrocenes, depending on the nature and number of substituents in the cyclopentadienyl ring.  相似文献   

16.
The octahedral cobalt(III) complexes, [Co(L)(int)2]Cl · 3H2O (1), [Co(L)(NCS)2]NCS · H2O (2) and [Co(L)(NCO)2]NCO · H2O (3) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane, int = isonicotinate) were obtained by the reactions of [Co(L)Cl2]Cl · 4H2O with the corresponding ligands. The X-ray analysis of 1 shows that the complex has an octahedral geometry formed by coordination of four secondary amines of the macrocycle and two oxygen atoms of the axial isonicotinate ligands. Complex 2 also has an octahedral geometry with four secondary amines of the macrocycle and two nitrogen atoms of the axial thiocyanate ligands. Electronic spectra of the complexes also exhibit a low-spin octahedral geometry. Cyclic voltammetry of the complexes undergoes a one-electron wave corresponding to a CoIII/CoII process. The electronic spectra and electrochemical behaviors of the complexes are significantly affected by the nature of the axial ligands.  相似文献   

17.
The chiral thallium amidinium cyclopentadiene-N-ylide complexes [C5(CO2Me)4{ArNC(Ar")NAr}]Tl were synthesized and structurally characterized by X-ray diffraction analysis and NMR spectroscopy. In these complexes, an unusual mode of coordination of the thallium atom was found, viz., the thallium atom is coordinated by both the side-chain nitrogen atom (N—Tl, 2.833(6) ) and the system of the cyclopentadienyl ring (Tl—Cp, 2.887(4) 5-bonding).  相似文献   

18.
The reaction of [CpRu(CH3CN)3]PF6 with the bidentate ligands L-L=1,2-bis(diphenylphosphino)ethane, dppe, and (1-diphenylarsino-2-diphenylphosphino)ethane, dpadppe, affords mononuclear or dinuclear complexes of formula [CpRu(η2-L-L)(CH3CN)]PF6, [{CpRu(CH3CN)2}2(μ-η1:1-L-L)](PF6)2 and [{CpRu(CH3CN)}2(μ-η1:1-L-L)2](PF6)2 (L-L=dppe, dpadppe). All of the compounds are characterized by microanalysis and NMR [1H and 31P{1H}] spectroscopy. The crystal structure of [{CpRu(CH3CN)2}2(μ-η1:1-dppe)](PF6)2 has been determined by X-ray diffraction analysis. The complex exhibits a dppe ligand bridging two CpRu(CH3CN)2 fragments.  相似文献   

19.
Treatment of the chiral tripod ligand (LMent,SC)-CpH(PNMent) with (Ph3P)3RuCl2 in ethanol afforded the two chiral-at-metal diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] (70% de) in which the cyclopentadienyl group and the P atom of the ligand coordinated at the metal center. The (LMent,SC,RRu)-diastereomer was isolated by crystallization from ethanol-pentane and its structure was established by X-ray crystallography. The (LMent,SC,RRu)-diastereomer epimerized in CDCl3 solution at 60 °C in a first-order reaction with a half-life of 5.66 h. In alcoholic solution epimerization occurred at room temperature. Substitution of the chloride ligand in (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] by nitriles NCR (R = Me, Ph, CH2Ph) in the presence of NH4PF6 gave mixtures of the diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NCR]PF6. Treatment of (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] with piperidine or morpholine in the presence of NH4PF6 led to the chiral-at-metal diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NH3]PF6 (6% de).  相似文献   

20.
Four half-sandwich cobalt complexes, CpCo(2-PyS)2 (2), CpCo(2-PyS)2 · HI (3), CpCo(2-PyS) (4-PyS) (4), (CpCo)2(μ-PhS)2(μ-2-PyS)I (5) [Cp = pentamethylcyclopentadienyl, 2-PyS = 2-pyridinethiolate, 4-PyS = 4-pyridinethiolate, PhS = benzenethiolate] were successfully synthesized by the reactions of 2-pyridinethione, lithium 4-pyridinethiolate and lithium benzenethiolate with CpCo(2-PyS)I (1), respectively. Complexes 2 and 3 have the structures with two 2-pyridinethiolates ligands coordinated to the cobalt atom. Two different pyridinethiolates ligands can be identified in complex 4. The molecular structure of 5 consists of two Cp-Co fragments, which are triply bridged by three sulfur atoms from different ligands. The molecular structures of 3 and 5 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号