首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

2.
The novel hydridocobalt(III) complex [mer-Co(H)(SPh)2(PMe3)3] (1) was prepared by reaction of thiophenol with [Co(PMe3)3Cl], [Co(PMe3)4] and [Co(PMe3)4Me]. A dinuclear cobalt dithiophenolato complex [Co(PMe3)2(SPh)]2 (2) was obtained from the reaction of thiophenol with [Co(PMe3)4Me]. Reaction of 1 with iodomethane afforded complex [Co(PMe3)3(I)2] (3). Reaction of complex 2 with carbon monoxide gave a mononuclear dicarbonyl cobalt(I) complex [Co(PMe3)3(CO)2(SPh)] (4). The crystal structures of 1-4 were determined by X-ray diffraction. Formation mechanism of 1 is discussed.  相似文献   

3.
The mono- and binuclear hydride compounds fac-[ReH(CO)3L] (1a) and [{ReH(CO)4}2(μ-L)] (1b) have been prepared by reaction of [ReH(CO)5] with Ph2PN(CH3)(CH2)2N(CH3)PPh2 (L) under UV light. Protonation reactions of the hydride compound 1a with equimolar amounts of HSO3CF3 or HCl yielded the triflato or the chlorido compounds fac-[Re(OSO2CF3)(CO)3L] (2) and fac-[ReCl(CO)3L] (3), respectively. The compounds have been characterised by elemental analysis, IR and NMR spectroscopic data, and mass spectrometry. Their structures have been confirmed by X-ray crystallography.  相似文献   

4.
The neutral, octahedral ruthenium vinylidene complexes mer,trans-[(PNN)Cl2Ru(CCHR)] (PNN = N-(2-diphenylphosphinobenzylidene)-2-(2-pyridyl)ethylamine; R = Ph, 1a; R = tBu, 1b) are reported. An X-ray crystallographic study of 1a confirms the tridentate, meridional coordination mode of the PNN ligand. Compounds 1a and 1b undergo regioselective electrophilic addition with HBF4 · Et2O at Cβ of the vinylidene ligand at low temperatures, and are cleanly and quantitatively converted to the ruthenium carbynes mer,trans-[(PNN)Cl2Ru(CCH2R)][BF4] (R = Ph, 2a; R = tBu, 2b). Carbynes 2a and 2b are stable only at low temperatures (<−50 °C). Complex 1a undergoes ligand substitution with L to yield mer,trans-[(PNN)Cl2Ru(L)] (L = MeCN, 3a; L = CO, 3b).  相似文献   

5.
Synthetic routines for a new ligand C5Me4CH2CH2PMe2 (2b) in forms of its Li- (2b-Li), Na- (2b-Na) salts and in the CH-form (2b-H), as well as for silanes Me3Si-C5H4CH2CH2PMe2 (3a) and Me3Si-C5Me4CH2CH2PMe2 (3b) have been developed. On the basis of it, new half-sandwich [η51P-C5H4CH2CH2PMe2]ZrCl3 (4a), [η51P-C5Me4CH2CH2PMe2]ZrCl3 (4b) and sandwich [η5-C5Me4CH2CH2PMe2]2ZrCl2 (5), [η5-C5Me4CH2CH2PMe2][η5-C5Me5]ZrCl3 (6) complexes of Zr(IV) have been prepared and characterized. Along with them, the first example of X-ray structurally characterized dinuclear Zr(IV) complex incorporating both sandwich (6) and half-sandwich (4b) moieties linked one to another by means of Zr ← P coordination bond 7, has been described. Formation of an analogously organized trinuclear complex 8, built from one sandwich fragment of 5 and two half-sandwich fragments of 4b was proved by NMR spectroscopy methods. Molecular structures of half-sandwich complexes in their solvent-free dimeric forms (4a and 4b) and as 1:1 adducts with THF (4a-THF and 4b-THF) along with those of dinuclear complex 7 have been established by X-ray diffraction analyses. The dynamic behavior for di- and trinuclear complexes 7 and 8, due to the intermolecular dissociation-coordination of the Me2P-groups in THF-d8 solutions has been studied by variable-temperature NMR spectroscopy.  相似文献   

6.
Reduction of [NMe4]2[ReBr5(NO)] (1) with zinc in acetonitrile leads to the known trisacetonitrile compound [ReBr2(CH3CN)3(NO)] (2). Attempts to turn 2 into a dihydrogen or a hydride complex applying direct reaction with H2 or with H2 and a base were unsuccessful. Complex 2 could be transformed into [ReBr(BF4)mer-(CH3CN)3(NO)] (2a) with AgBF4 in acetonitrile and was used as a starting material in a ligand exchange reaction with the water soluble phosphine 1,3,5-triaza-7-phosphadamantane (PTA) to obtain the complex [ReBr2(NO)(PTA)3] (3). When the reduction of 1 with zinc was carried out in the presence of PTA in acetonitrile, the disubstituted complex [ReBr2(CH3CN)(NO)(PTA)2] (4) was formed. The olefin-coordinated rhenium complexes [ReBr2(NO)(CH2CH2)(PTA)2] (5a) and [ReBr2(NO)(PhCHCH2)(PTA)2] (5b) were obtained from the reaction of 4 with the corresponding olefins. Complex 4 reacts further with NaHBEt3 in THF to give the dihydride [ReH2(THF)(NO)(PTA)2] (6). In the presence of ethylene 6 is transformed into the ethyl hydride complex [ReH(CH2CH3)(η2-C2H4)(NO)(PTA)2] (7). Complexes 6 showed catalytic activity in the hydrogenation of olefins.  相似文献   

7.
The reaction of bromoalkanes (R–Br; (3), R=CnH2n+1, n=4 (a), 8 (b), 12 (c),18 (d)) and bromobenzyl derivatives (R′–Br; (4), R′=CH2C6H2(CH3)3-2,4,6 (a); CH2C6H(CH3)4-2,3,5,6 (b); CH2C6(CH3)5 (c)) with 1H-imidazo[4,5-f][1,10]-phenanthroline (IP)(L2) gave the corresponding 1-R-imidazo[4,5-f][1,10]-phenanthroline (IPR)(L3ad) and 1-R′-imidazo[4,5-f][1,10]-phenanthroline(IPR')(L4ac) ligands, respectively. Treatment of L3ad and L4ad with [Ru(p-cymene)Cl2]2 led to the formation of [Ru(p-cymene)(IPR)Cl]Cl (RuL3ad) and [Ru(p-cymene)(IPR′)Cl]Cl (RuL4ac). New ruthenium(II) complexes RuL3ad and RuL4ac were characterized by elemental analysis, FTIR, UV–visible and NMR spectroscopy. In order to understand effects of these changes on the N-substituent of imidazol on IP and how they translate to catalytic activity, these new RuL2, RuL3ad and RuL4ac were applied in the transfer hydrogenation of ketones by 2-propanol in presence of potassium hydroxide. The activities of the catalysts were monitored by NMR and GC analysis.  相似文献   

8.
A series of cationic palladium complexes of general formula [Pd(CH3)(NCCH3)(N-N)][X] (N-N = phen 1, 3-sec-butyl-1,10-phenanthroline (3-sBu-phen) 2, bpy 3, (−)-(S,S)-3,3′-(1,2-dimethylethylenedioxy)-2,2′-bipyridine (bbpy) 4, (+)-(R)-3,3′-(1-methylethylenedioxy)-2,2′-bipyridine (pbpy) 5, N,N′-bis(2,6-diisopropylphenyl)-2,3-butanediimine (iso-DAB) 6; , OTf (OTf = triflate) b) containing different nitrogen-donor ligands were prepared from the corresponding neutral chloro derivatives [Pd(CH3)(Cl)(N-N)] (1c-6c). They were characterized by 1H NMR spectroscopy and elemental analysis. Single crystals suitable for X-ray determination were obtained for complexes [Pd(CH3)(NCCH3)(bbpy)][PF6] (4a), [Pd(CH3)(NCCH3)(iso-DAB)][PF6] (6a) and [Pd(Cl)2(bbpy)] (4c′). The latter is the result of an exchange reaction of the methyl group, present in complex 4c, with a chloride, that occurred after dissolution of 4c in CDCl3, for 1 week at 0 °C. The catalytic behavior of complexes 1a-5a and 1b-5b in the CO/styrene copolymerization was studied in CH2Cl2 and 2,2,2-trifluoroethanol (TFE) evidencing the positive effect of the fluorinated alcohol both in terms of productivity and molecular weight values of the polymers obtained. Influence of the nitrogen ligand, the anion and the reaction time in both solvents were investigated and is discussed in detail. Encouraging preliminary results were also obtained in the synthesis of polyethylene, in TFE, catalyzed by [Pd(CH3)(NCCH3)(iso-DAB)][PF6] (6a).  相似文献   

9.
The reaction of the complex [{(η6-C6Me6)Ru(μ-Cl)Cl}2] 1 with sodium azide ligand gave two new dimers of the composition [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2 and [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3, depending upon the reaction conditions. Complex 3 with excess of sodium azide in ethanol yielded complex 2. These complexes undergo substitution reactions with monodentate ligands to yield monomeric complexes of the type [(η6-C6Me6)Ru(X)(N3)(L)] {X = N3, Cl, L = PPh3 (4a, 9a); PMe2Ph (4b, 9b); AsPh3 (4c, 9c); X = N3, L = pyrazole (Hpz) (5a); 3-methylpyrazole (3-Hmpz) (5b) and 3,5-dimethyl-pyrazole (3,5-Hdmpz) (5c)}. Complexes 2 and 3 also react with bidentate ligands to give bridging complexes of the type [{(η6-C6Me6)Ru(N3)(X)]2(μ-L)} {X = N3, Cl, L = 1,2-bis(diphenylphosphino)methane (dppm) (6, 10); 1,2-bis(diphenylphosphino)ethane (dppe) (7, 11); 1,2-bis(diphenylphosphino)propane (dppp) (8, 12); X = Cl, L = 4,4-bipyridine (4,4′-bipy) (13)}. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as by analytical data.The molecular structures of the representative complexes [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2, [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3,[(η6-C6Me6)Ru(N3)2(PPh3)] 4a and [{(η6-C6Me6)Ru(N3)2}2 (μ-dppm)] 6 were established by single crystal X-ray diffraction studies.  相似文献   

10.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

11.
Deprotonation of the phosphane-borane adduct rac/meso-(HP(BH3)(Ph)CH2)2 (2) with KH provides facile access to the bidentate phosphanylborohydride rac/meso-K2[(P(BH3)(Ph)CH2)2] (3). Treatment of 3 with two equivalents of [CpFe(CO)2I] gives the dinuclear complex rac/meso-[(CpFe(CO)2)2-μ-(P(BH3)(Ph)CH2)2] (4). Single crystals of the pure diastereomers meso-2, meso-3(thf)4, and rac-4 have been grown from toluene/pentane, diethyl ether/thf, and benzene/pentane, respectively. The molecular structures of all three compounds have been determined by X-ray crystallography.  相似文献   

12.
Three new optically pure C1-terpyridine ligands (L13) were prepared and the copper(II) complexes, of formula [Cu(L)Cl2], the rhodium(III) complexes, of formula [Rh(L)Cl3], and the ruthenium(II) complexes, of formula cis- or trans-[Ru(L)(X)Cl2] (X = DMSO or CO), were synthesized. Structures of a chiral C1-ligand, a copper complex, a rhodium complex and a ruthenium DMSO complex were analysed using X-ray crystal structure analysis. The copper, rhodium and ruthenium complexes were shown to be precursors of catalysts for cyclopropanation. Reaction of [Cu(L)Cl2], [Rh(L)Cl3] or cis- or trans-[Ru(L)(X)Cl2] with AgOTf converted the complex to catalyst, which in the case of trans-[Ru(L)(CO)Cl2] gave enantioselectivities of up to 67% ee for the cis-isomers of styrene cyclopropanes with t-butyl diazoacetate. Comparisons with C2-analog of copper, rhodium and ruthenium catalysts were made.  相似文献   

13.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

14.
A convenient synthesis and the characterization of six new electronically and coordinatively unsaturated complexes of the formula [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-L2)] (2b-g) (RuRu) is described exhibiting a close relation to the known [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)] (2a). The complexes 2b-g were obtained in a kind of one-pot synthesis starting from [Ru3(CO)12] and PtBu2H in the first step followed by the reaction with the bidentate bridging ligand in the second step. The method was developed for the following bridging ligands (μ-L2): dmpm (2b, dmpm = Me2PCH2PMe2), dcypm (2c, dcypm = Cy2PCH2PCy2), dppen (2d, dppen = Ph2PC(=CH2)PPh2), dpppha (2e, dpppha = Ph2PN(Ph)PPh2), dpppra (2f, dpppra = Ph2PN(Pr)PPh2), and dppbza (2g, dppbza = Ph2PN(CH2Ph)PPh2). The molecular structures of all new complexes 2bg were determined by X-ray diffraction.  相似文献   

15.
The triple ligand transfer reaction between planar-chiral cyclopentadienyl-ruthenium complexes [Cp′Ru(NCMe)3][PF6] (1) (Cp′ = 1-(COOR2)-2-Me-4-R1C5H2; R1 = Me, Ph, t-Bu) and iron complexes CpFe(CO)(L)X (2) (L = PMe3, PMe2Ph, PMePh2, PPh3; X = I, Br) resulted in the formation of metal-centered chiral ruthenium complexes Cp′Ru(CO)(L)X (3) in moderate yields with diastereoselectivities of up to 68% de. The configurations of some major diastereomers were determined to be by X-ray crystallography. The diastereoselectivity of 3 was under kinetic control and not affected by the steric effect of the substituents on the Cp′ ring of 1 and the phosphine of 2. Although the double ligand transfer reaction between [Cp′Ru{P(OMe)3}(NCMe)2][PF6] (7) and CpFe(CO)2X (8) produced Cp′Ru{P(OMe)3}(CO)X (9), the selectivity at the ruthenium center was low.  相似文献   

16.
A series of mononuclear ruthenium complexes containing pyridine- and pyrimidine-2-thiolato ligands was prepared and characterized. The new compounds of general formula CpRu(PPh3)(κ2S,N-SR) (1) (SR = pyridine-2-thiolate (a), pyrimidine-2-thiolate (b)) were prepared directly by reacting the thiolato anions (RS) with CpRu(PPh3)2Cl. Complexes 1 readily react with NOBF4 or CO in THF at room temperature to give [CpRu(PPh3)(NO)(κ1S-HSR)][BF4]2 (2) and CpRu(PPh3)(CO)(κ1S-SR) (3), respectively. The one-pot reaction of CpRu(PPh3)2Cl, thiolato anions and bis(diphenylphosphino)ethane (dppe) gave CpRu(dppe)(κ1S-SR) [dppe: Ph2PCH2CH2PPh2 (4)]. The complex salts, [CpRu(PPh3)21S-HSR)]BPh4 (5) are prepared by mixing CpRu(PPh3)2Cl, HSR and NaBPh4 at room temperature. The structures of CpRu(PPh3)(κ2S,N-Spy) (1a), [CpRu(PPh3)(NO)(κ1S-HSpy)][BF4]2 (2a) and CpRu(PPh3)(CO)(κ1S-Spy) (3a), (py = C5H4N) have been determined.  相似文献   

17.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

18.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

19.
TMNO-activated reaction of the heteronuclear cluster Os3Ru(μ-H)2(CO)13 (1) with diphenylphosphine afforded the novel phosphido-bridged clusters Os3Ru(μ-PPh2)(μ-H)3(CO)11 (2), Os3Ru(μ-PPh2)2(μ-H)2(CO)10 (3), Os3Ru(μ-PPh2)2(μ-H)4(CO)9 (4), and Os3Ru(μ-PPh2)(μ-H)3(CO)11(PPh2H) (5). The formation of 2-5 proceeded via P-H bond cleavage in the adduct Os3Ru(μ-H)2(CO)12(PPh2H) (6). Reaction of 2 with PPh3 afforded the adduct Os3Ru(μ-PPh2)(μ-H)3(CO)11(PPh3) (7) and the substituted derivative Os3Ru(μ-PPh2)(μ-H)3(CO)10(PPh3) (8).  相似文献   

20.
Studies from authors’ group (at the University of Tennessee) on alkylidene complexes and α-H migration in alkyl alkylidyne complexes, leading to unusual tautomerization equilibria between bis-alkylidenes and alkyl alkylidynes, are reviewed. Preparation of silyl alkylidene complexes (Me3ECH2)2Ta(CHEMe3)(SiR3) [R3 = (SiMe3)3, E = C, 3a, Si, 3b; R3 = ButPh2, E = C, 4a, Si, 4b] and the pathway in the formation of 3b are discussed first. Pathways in the formation of archetypical Schrock-type alkyl alkylidenes (Me3ECH2)3TaCHEMe3 (E = C, 5a; Si, 5b), including the work using Ta(CD2CMe3)5 (21-d10) to confirm that it is the precursor to (Me3CCD2)3TaCDCMe3 (5a-d7), are then considered. Tautomerization of silyl alkylidyne (Me3CCH2)2W(CCMe3)(SiButPh2) (6a) with bis-alkylidene (Me3CCH2)W(CHCMe3)2(SiButPh2) (6b) as well as (Me3SiCH2)3W(CSiMe3)(PR3) [R3 = Me3, 7a; Me2Ph, 8a; Me2(CH2)2PMe2 (DMPE-P), 9a] with (Me3SiCH2)2W(CHSiMe3)2(PR3) (R3 = Me3, 7b; Me2Ph, 8b; DMPE-P, 9b) [P refers to a dangling P atom in Me2P(CH2)2PMe2] is covered next. Finally the conversion of the tungsten phosphine tautomerization mixtures to alkyl alkylidene alkylidyne (Me3SiCH2)W(CHSiMe3)(CSiMe3)(PR3)2 [(PR3)2 = (PMe3)2, 10; (PMe2Ph)2, 11; DMPE, 12], including its pathway, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号