首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses and spectroscopic (NMR, MS) investigations of the antimonates [Ph4P]+[Me2SbCl4] (1), [Me4Sb]+[Me2SbCl4] (2), [Et4N]+[Ph2SbCl4] (3), [Bu4N]+[Ph2SbCl4] (4), [Me4Sb]+[Ph2SbCl4] (5), [Et3MeSb]+[Ph2SbCl4] (6), [Et4N]+[Ph2SbF4] (7) and [Et4N]+[Ph2SbBr4] (8) are reported. Halogen scrambling reactions of Et4NBr or Ph4EBr (E = P, Sb) with R2SbCl3 (R = Me, Ph) produce mixtures of compounds from which crystals of [Et4N]+[Ph2SbBr1.24Cl2.76] (9), [Et4N]+[Ph2SbBr2.92Cl1.08] (10) or [Ph4Sb]+[Me2SbCl4] (11) were isolated. The crystal and molecular structures of 1 and 3-11 are reported.  相似文献   

2.
The ferrocene-based bis(pyrazol-1-yl)borate ligands [Fc2Bpz2] ([2]) and [Fc2BpzPh2] ([2Ph]) have been prepared (Fc: ferrocenyl; pz: pyrazol-1-yl; pzPh: 3-phenylpyrazol-1-yl). Treatment of [2] and [2Ph] with MnCl2 in THF leads to the complexes [Fc2Bpz2Mn(THF)(μ-Cl)2Mn(THF)pz2BFc2] (3) and [Fc2BpzPh2Mn(THF)Cl] (3Ph), respectively, which have been structurally characterized by X-ray crystallography. While there is clearly no ferrocene-MnII π-coordination in the solid-state structure of 3, short MnII-C5H4 contacts are established in 3Ph (shortest Mn-C distances: 2.780(2) Å, 2.872(2) Å). The cyclic voltammograms of K[2Ph] and 3Ph show the first ferrocene/ferricinium redox wave of 3Ph to be shifted anodically by 0.60 V compared with the first FeII/FeIII transition of K[2Ph].  相似文献   

3.
Reactions of [η5-carboxycyclopentadienyl][η4-tetraphenylcyclobutadiene] cobalt, Ph4C4CoC5H4COOH (1), with (Ph3Sn)2O, [(n-Bu)2SnO]n and (Ph2SnO)n in refluxing toluene resulted in the formation of the monomeric compound Ph3SnOC(O)C5H4CoC4Ph4 (2) and dimeric compounds n-Bu2Sn[OC(O)C5H4CoC4Ph4]2 (3) and Ph2Sn[OC(O)C5H4CoC4Ph4]2 (4), respectively. Reactions carried out in the solid state by mechanical grinding also yielded same results. Crystal structure determination and cyclic voltammetric studies of compounds 1, 2, 3 and 4 have been carried out and compared with similar ferrocene carboxylic acid derivatives. The structures and electrochemistry of these compounds are compared with analogous organotin ferrocene carboxylates. The results obtained from the reaction of 1 with alkyl and aryl tin oxides suggest that the formation of stannoxanes assemblies having more than two carboxylate units are not favored indicating that 1 is a highly sterically hindered metallocene carboxylic acid.  相似文献   

4.
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH2CHCH2)CH3Si(C5H4)2]TiCl2 (1), [(CH2CHCH2)CH3Si(C9H6)2]MCl2 [M=Ti (2), Zr (3), Hf (4)] and [(CH2CHCH2)CH3Si(C13H8)2]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 106 g PE mol−1 M h−1 and high molecular weight (Mw≈105) of polyethylene.  相似文献   

5.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

6.
The di- and triorganotin(IV) derivatives of anthracenecarboxylic acid, Ph2MeSnOC(O)C14H9 (2), Me3SnOC(O)C14H9 (3), Me2Sn[OC(O)C14H9]2 · CH3OH (4) Ph3SnOC(O)C14H9 · CH3OH (5), Ph2EtSnOC(O)C14H9 (6), Ph2Sn[OC(O)(C14H9)]2 (7) and PhMe2SnOC(O)C14H9 (8) were synthesized by the reaction of Ph2MeSnI, Me3SnCl, Me2SnCl2, Ph3SnCl, Ph2EtSnI, Ph2SnCl2, and PhMe2SnI with 9-anthracenecarboxylic acid, respectively, with the aid of potassium iso-propoxide. All complexes were characterized by elemental analysis, mass spectrometry, IR, 1H, 13C and 119Sn NMR spectroscopes. The molecular structures of complexes 2, 3 and 4 were determined by single crystal X-ray analysis. The X-ray structures reveal that complex 2 and 3 adopt a polymeric trans-C3SnO2 trigonal bipyamidal configuration with the oxygen atoms occupying axial positions. Complex 4 adopts a monomeric structure with two carboxylates coordinated to tin in a monodentate form from axial and equatorial positions, and with the coordination number raised to five as the methanol occupies the apical position of the trigonal bipyramid.  相似文献   

7.
The one-pot reaction of [CpMo(NO)(CO)2] with elemental sulfur and dimethyl acetylenedicarboxylate (C2Z2 (Z = COOMe)) gave the [2+2] cycloadduct of the mononuclear molybdenum dithiolene complex [CpMo(NO)(S2C2Z2)(C2Z2)] (1), and some binuclear complexes:[CpMo(NO)(S2C2Z2)]2 (2), [Cp2Mo2(NO)2S2(S2C2Z2)] (3) and [CpMo(NO)S2]2 (4).The reaction of [CpMo(NO)(Cl)(μ-Cl)]2 with OC{S2C2(COOMe)2} in the presence of sodium methoxide also produced complex 2 and the paramagnetic CpMo bisdithiolene complex [CpMo(S2C2Z2)2] (5, Z = COOMe).The structures of complexes 1-5 were determined by X-ray crystal structure analysis.The nitrosyl ligands of complexes 1-4 showed a linear coordination to the molybdenum center (the Mo-N-O bond angles = 169-174°), and their N-O bond lengths were 1.17-1.20 Å.In the binuclear complexes 2-4, two nitrosyl ligands were placed at cis-position.Complexes 1 and 2 were characterized by cyclic voltammetry and spectroelectrochemistry (visible and IR). The electrochemical reduction of the dimeric complex 2 formed the monomeric dithiolene complex[CpMo(NO)(S2C2Z2)] (X) whose lifetime was several minutes. When the anion X was electrochemically oxidized, the coordinatively unsaturated species X was generated, but it was immediately dimerized to afford the original dimeric complex 2. The reduction of the complex 1 included the elimination of the bridged DMAD moiety (C2Z2) to give the anion X.  相似文献   

8.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

9.
The complexes [Rh(CO)(PPh3){Ph2PNP(O)Ph2-P,O}] (3), [Rh(CO)2{Ph2P(Se)NP(Se)Ph2-Se,Se′}] (5), and [Rh(CO)(PPh3){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (6), were synthesised by stepwise reactions of CO and PPh3 with [Rh(cod){Ph2PNP(O)Ph2-P,O}] (2) and [Rh(cod){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (4), respectively. The complexes 3, 5 and 6 have been studied by IR, as well as 1H and 31P NMR spectroscopy. The ν(CO) bands of complexes 3 and 6 appear at approximately 1960 cm−1, indicating high electron density at the RhI centre. The structure of complexes 3 and 6 has been determined by X-ray crystallography, and the 31P NMR chemical shifts have been resolved via low temperature NMR experiments. Both complexes exhibit square planar geometry around the metal centre, with the five-membered ring of complex 3 being almost planar, and the six-membered ring of complex 6 adopting a slightly distorted boat conformation. The C-O bond of the carbonyl ligand is relatively weak in both complexes, due to strong π-back donation from the electron rich RhI centre. The catalytic activity of the complexes 2, 3 and 6 in the hydroformylation of styrene has been investigated. Complexes 2 and 3 showed satisfactory catalytic properties, whereas complex 6 had effectively no catalytic activity.  相似文献   

10.
The ansa-bis(cyclopentadiene) compounds, Me2Si(C5HPh4)(C5H4R) (R = H (2); But (3)), have been prepared by the reaction of C5HPh4(SiMe2Cl) (1) with Na(C5H5) or Li(C5H4But), respectively, and transformed to the di-lithium derivatives, Li2{Me2Si(C5Ph4)(C5H3R)} (R = H (4); But (5)), by the action of n-butyllithium. The ansa-zirconocene complexes, [Zr{Me2Si(η5-C5Ph4)(η5-C5H3R)}Cl2] (R = H (6); But (7)), were synthesized from the reaction of ZrCl4 with 4 or 5, respectively. Compounds 6 and 7 have been tested in the polymerization of ethylene and compared with their methyl-substituted analogues, [Zr{Me2Si(η5-C5Me4)(η5-C5H3R)}Cl2] (R = H (8); But (9)). Whilst 8 and 9 are catalytically active, the tetraphenyl-substituted complexes 6 and 7 proved to be inactive in the polymerization of ethylene. This phenomenon has been explained by DFT calculations based on the reaction intermediates in the polymerization processes involving 6 and 7, which showed that the extraction of a methyl group from the zirconocene complex to form the cationic active specie is endothermic and therefore unfavourable.  相似文献   

11.
Triphenylantimony(III) and triethylantimony(III) readily react with 4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-o-benzoquinone to form catecholato complexes R3Sb(4,5-Cat) (R = Ph (1), Et (2); 4,5-Cat is dianionic 4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-catecholate). In polar solvents (CHCl3, acetone) complex 1 transforms easily to ionic complex compound [Ph4Sb]+[Ph2Sb(4,5-Cat)2] (3) with diphenyl-bis-[4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-catecholato]antimony(V) complex anion. Complexes were characterized by IR, 1H, 13C NMR spectroscopy, cyclic voltammometry. Molecular structure of 3·CHCl3 was confirmed by X-ray analysis. Cyclic voltammometry of 1 and 3 shows that both complexes undergo reversible one-electron oxidation to quite stable paramagnetic o-semiquinonato species [Ph3Sb(4,5-SQ)]+ and [Ph2Sb(4,5-SQ)(4,5-Cat)] (0.75 and 0.49 V in CH2Cl2 vs. Ag/AgCl/KCl, respectively).  相似文献   

12.
The synthesis of the bis(η5-indenyl)iron sandwich complexes (η5-1-SiMe3-C9H6)2Fe (3a), (η5-2-SiMe3-C9H6)2Fe (3b), [η5-1,2-(SiMe3)2C9H5]2Fe (4a) and [η5-1,3-(SiMe3)2C9H5]2Fe (4b), by the reaction of the appropriate lithium indenide salts [prepared from 1-SiMe3-C9H7 (2a), 2-SiMe3-C9H7 (2b), 1,2-(SiMe3)2C9H6 (2c) or 1,3-(SiMe3)2C9H6 (2d)] with ferrous chloride (1) in a 2:1 molar ratio is discussed. The solid-state structure of 4b was determined by single-crystal X-ray diffractometry. Complex 4b exists in a gauche conformation, showing that the indenyl ligands are sterically imposed by the bulk of the Me3Si substituents. The average Fe-C distance is 2.091(3) Å. Cyclovoltammetric studies indicate that 3 and 4 are redox-active with one-electron oxidations [E1/2=−270 to −360 mV versus Fc/Fc+, Fc=(η5-C5H5)2Fe].  相似文献   

13.
Treatment of R2Si(CC-SiMe3)2 [1a (Me), 1b (Ph)] with HB(C6F5)2 at low temperature (253 K (a), 273 K (b)) gives the -B(C6F5)2 substituted silacyclobutene products (4a,b) under kinetic control. Upon warming to room temperature they disappear to form the thermodynamically favoured isomeric silole derivatives (2a,b). Similar treatment of Me2Si(CC-R1)2 [5a (R1 = Ph), 5b (R1 = tert-butyl) with HB(C6F5)2 at room temperature gave the stable -B(C6F5)2 substituted silacyclobutene derivatives 6 and 7, respectively. Subsequent photolysis resulted in a Z- to E-isomerization of the substituted exocyclic CC double bonds in these products. The silacyclobutene derivative E-6 was characterized by an X-ray crystal structure analysis.  相似文献   

14.
Eight diorganotin esters of salicylidene-L-tryptophan(Sal-T) and salicylidene-L-valine(Sal-V), [(n-Bu)2Sn(Sal-T)] (1), [(n-Bu)2Sn(Sal-V)] (2), [Ph2Sn(Sal-T)] (3), [Ph2Sn(Sal-V)] (4), [(PhCH2)2Sn(Sal-T)] (5), [(PhCH2)2Sn(Sal-V)] (6), [(4-ClC6H4CH2)2Sn(Sal-T)] (7) and [(4-ClC6H4CH2)2Sn(Sal-V)] (8) have been synthesized and characterized by elemental analysis, IR and 1H NMR. The crystal structures of compounds 1 and 2 have been determined by X-ray single crystal diffraction. Their structures show the tin atoms of two compounds are rendered five-coordinated in distorted trigonal bipyramidal geometries.  相似文献   

15.
Adamantane-dipyrromethane (AdD) receptors [di(pyrrole-2-yl)methyladamantane (1), 2,2-di(pyrrole-2-yl)adamantane (2), 1,3-bis[di(pyrrole-2-yl)methyl]adamantane (3), 2,2,6,6-tetra(pyrrole-2-yl)adamantane (4)] form complexes with F, Cl, Br, AcO, NO3, HSO4, and H2PO4. The association constants of the complexes were determined by 1H NMR titrations, whereas the geometries of complexes 1·F (2:1), 2·F (2:1), 2·Cl (2:1), 2·AcO (2:1), and 4·F (1:1) were determined by X-ray structural analysis. The most stable complexes are of 2:1 stoichiometry with F and AcO. The stability constants are in accordance with the anion basicity and the ability of AdD receptors to place the hydrogen bonding donor groups in a tetrahedral fashion around anions. The binding energies of the complexes between receptors 1-4 and F anion are calculated using quantum chemical methods. The calculated results show that the solvent polarity is important for the complexation of fluoride ion with AdD receptors 1-4.  相似文献   

16.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

17.
Two series of complexes of the types trans-[CoIII(Mebpb)(amine)2]ClO4 {Mebpb2− = N,N-bis(pyridine-2-carboxamido)-4-methylbenzene dianion, and amine = pyrrolidine (prldn) (1a), piperidine (pprdn) (2a), morpholine (mrpln) (3a), benzylamine (bzlan) (4a)}, and trans-[CoIII(cbpb)(amine)2]X {cbpb2− = N,N-bis(pyridine-2-carboxamido)-4-chlorobenzene dianion, and amine = pyrrolidine (prldn), X = PF6 (1b), piperidine (pprdn), X = PF6 (2b), morpholine (mrpln), X = ClO4 (3b), benzylamine (bzlan), X = PF6 (4b)} have been synthesized and characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structure of 1a has been determined by X-ray diffraction. The electrochemical behavior of these complexes, with the goal of evaluating the effect of axial ligation and equatorial substitution on the redox properties, is also reported. The reduction potential of CoIII, ranging from −0.53 V for (1a) to −0.31 V for (3a) and from −0.48 V for (1b) to −0.22 V for (3b) show a relatively good correlation with the σ-donor ability of the axial ligands. The methyl and chloro substituents of the equatorial ligand have a considerable effect on the redox potentials of the central cobalt ion and the ligand-centered redox processes.  相似文献   

18.
Rhodium η5-complexes bearing an indenyl-type fullerene ligand, Rh[C60(PhCH2)2Ph](cod) (2), Rh[C60(PhCH2)2Ph](nbd) (3) and Rh(C70Ph3)(cod) (4), have been synthesized from the corresponding fullerene tri-adducts in 93-96% yields. X-ray crystallographic analysis of 4 indicated that the structure of 4 is similar to that of Rh(Ind)(cod). The rhodium complex 2 catalyzes alkyne trimerization reactions and hydroboration reactions.  相似文献   

19.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

20.
The new methyl-tris(pyrazolyl)borate reagents Li[MeTpPh] (1) [MeTpPh] = MeB(3-Ph-pyrazolyl)3) and Tl[MeTpPh] (2) react with TiCl4 to afford (MeTpPh)TiCl3 (3) in 77% and 81% yield respectively. 2 reacts with ZrCl4 and HfCl4 to yield mixtures of products. The reaction of 1 with TiCl3(THF)3 proceeds with B-N bond cleavage to afford TiCl3(3-Ph-pyrazole)(THF)2 as the major product (30%). The reaction of 3 with MeLi (3 equiv) yields 1 (60%) and reduced Ti species, via apparent displacement of [MeTpPh] and generation of unstable TiCl4Me4−x species. Under MAO activation conditions (MAO = methylalumoxane), 3 polymerizes ethylene to linear polyethylene. 3/MAO is significantly more active in ethylene polymerization than the hydrido-tris(pyrazolyl)borate analogue {HB(3-Ph-pyrazolyl)3}TiCl3/MAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号