首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the preparation of planar waveguides by Ag+ → Na+ ion exchange in Er3+-doped tellurite glass with a composition of 75TeO2-2GeO2-10Na2O-12ZnO-1Er2O3 (mol%). The metric, of Tx − Tg, indicates that the glass has good thermal stability. Measurments of refractive index, absorption spectrum, luminescence and lifetime were made. The glass was chemically stable during the ion exchange process. Monomode and multimode planar waveguides in the tellurite glasses have been prepared. We determined the depth of the guides, effective diffusion coefficient and the activation energy. The depths of the waveguides could be controlled by varying ion exchange temperatures and times (250-280 °C, and 3-12 h were used).  相似文献   

2.
The local glass structure of tellurite glasses containing CuO with the nominal composition x(CuO) · (1−x)(TeO2), where x=0.10, 0.20, 0.30, 0.40, and 0.50, as well as the valence state of the copper ions have been investigated by X-ray photoelectron spectroscopy (XPS) and magnetization measurements. The Te 3d core level spectra for all glass samples show symmetrical peaks (Te 3d5/2 and Te 3d3/2) at essentially the same binding energies as measured for TeO2 indicating that the chemical environment of the Te atoms in the glasses does not vary significantly with the addition of CuO. The O 1s spectra, however, show slight asymmetry for all glass samples which results from two contributions, one from the presence of oxygen atoms in the Te-O-Te environment (bridging oxygen BO) and the other from oxygen atoms in an Te-O-Cu environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with CuO content and to be in good agreement with calculated values for the TeO4 trigonal bipyramid structure. Moreover, the appearance of a satellite peak in the Cu 2p spectra provides definitive evidence for the presence of Cu2+ ions in these glass samples where the asymmetry and broadening of the Cu 2p3/2 and Cu 2p1/2 peaks are indicative of the presence of both Cu2+ and Cu+ ions. The relative concentration Cu2+ determined from XPS is in good qualitative agreement with the determinations of Cu2+ from magnetic susceptibility measurements on the same glass samples. Furthermore the susceptibility data follow a Curie-Weiss temperature-dependent behavior (χ=C/(Tθ)) with negative Curie temperatures indicating that the predominant magnetic interactions between the Cu2+-Cu2+ exchange pairs are antiferromagnetic in nature.  相似文献   

3.
Low-temperature resistivities, in zero-field and 8 T field, and magnetoresistance have been measured down to 1.4-300 K for stable icosahedral quasicrystals Al65Cu20+xRu15−x (x = 1.5, 1.0, 0.5, 0.0 and −0.5). The analysis of the magnetoresistance data shows an overwhelming presence of anti weak-localization effect (τso ∼ 10−12 s). But the sample with x = −0.5 shows anomalous magnetoresistance and the anti weak-localization effect breaks down (τso to be 10−15 s). The in-field σ-T between 5 K and 20 K, for x = 1.0, 0.5, 0.0 and −0.5 samples, and between 1.4 K and 40 K for x = 1.5 sample, follow a power-law behavior with an exponent of 0.5 and above ∼30 K the exponent ranges from 1.17 to 1.58. The observed power-laws basically characterize the presence of critical regime of the metal-insulator (MI) transition, dominated by electron-electron and electron-phonon inelastic scattering events respectively. In samples with x = 1.0, 0.5, 0.0 and −0.5 the in field σ-T has been found to follow ln σ-vs-T1/4 below 5 K, which indicates the presence of variable range hopping. The observed transport features indicate the occurrence of proximity of metal-insulator transition in these Al-Cu-Ru quasicrystal samples.  相似文献   

4.
Glasses based on (85 − x)TeO2-xZnF2-12PbO-3Nb2O5 (x = 0-40) system have been studied for the first time for fabricating mid-infrared optical fiber lasers. The thermal and optical properties including UV-Vis, Raman as well as FTIR spectra are reported. It is demonstrated that increasing the ZnF2 concentration to 30 mol% significantly increased the thermal stability of the glass. Adding ZnF2 also reduced the hydroxyl (OH) content of the glass resulting in lower optical absorption in the mid-infrared region, which is crucial for infrared laser applications. The glass absorption cut-off edge near 400 nm blue-shifts with increasing ZnF2 addition. Raman spectra show a depolymerization of the glass network with increasing transformation of TeO3+1 to TeO3 structures.  相似文献   

5.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

6.
Glasses of the 25Ln2O3-25B2O3-50GeO2 composition (mol%) where Ln = (1 − x − y) La, xEr, yYb, with an addition of Al2O3 have been obtained and their luminescent characteristics examined. Probabilities of spontaneous emission, peak sections of the induced radiation and quantum yields of luminescence corresponding to the 2F5/2 → 2F7/2 transition of Yb3+ ions and the 4I13/2 → 4I15/2 transition of Er3+ ions have been defined. Quantum yield of Yb3+ luminescence for glasses with low Yb2O3 concentration reaches values closed to 100%. The luminescence spectrum of Er3+ ions exhibits a broad peak at about 1530 nm with effective width more than 80 nm when excited by irradiation at λ = 977 nm. Spontaneous emission probability and peak stimulated radiation section for Er3+ luminescence band 4I13/2 → 4I15/2 were determined to be equal to 175 s−1 and 4.9 × 10−21 cm2 respectively. Effective quenching of both rare-earth activators by oscillations with ν ≈ 2630 and 2270 cm−1 was found. These oscillators, most likely, represent OH-groups connected by a hydrogen bond with non-bridging oxygen atoms in the borogermanate matrix.  相似文献   

7.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

8.
In this paper we describe fabrication and characterization of rare-earth-doped active tellurite glasses to be used as active laser media for fiber lasers emitting in the 2 μm region. The base composition is (mol%): 75TeO2-20ZnO-5Na2O with different concentrations of Tm3+, Yb3+ and Ho3+ as dopants or co-dopants. Optical properties of doped glasses were studied and pumping at 800 nm and at 980 nm were tested in order to compare the efficiency of two pumping mechanisms. Optical characterization carried out on glasses containing only Tm3+ ions indicated the optimum concentration of Tm2O3 in terms of emission efficiency as 1 wt%. The addition of 5 wt% of Yb2O3 to Tm3+-doped glasses led to the best results in terms of intensity of fluorescence emission and of lifetime values. Yb and Ho co-doped Tm-tellurite glass was measured in emission.  相似文献   

9.
The non-linear optical performance and structure of TeO2-Nb2O5-ZnO glasses was investigated as a function of ZnO content. The third-order non-linear optical susceptibility (χ(3)) as measured by a Degenerate Four Wave Mixing (DFWM) method, initially increased with increasing ZnO content to about 8.2 × 10−13 esu for a glass containing 2.5 wt% ZnO, and then decreased to 5.9 × 10−13 esu as the ZnO content increased to 10 wt%. There was no noticeable change as the ZnO content increased from 10 to 15 wt%. The non-linear optical response time, which caused electron cloud deformation, was from 450 to 500 fs. The structure of these glasses as analyzed by Raman spectroscopy and FT-IR spectra, was affected by the addition of ZnO up to 5 wt%, when, it is believed, the Zn2+ ions occupied the interstitial positions in the glass network by replacing the Nb5+ ions. The replaced Nb5+ ions occupied the network forming positions as the Te4+ ions. Increasing ZnO > 5 wt% did not have any further effect on the glass structure.  相似文献   

10.
N. Baizura 《Journal of Non》2011,357(15):2810-2815
Tellurite 75TeO2-(10 − x)Nb2O5-15ZnO-(x)Er2O3; (x = 0.0-2.5 mol%) glass system with concurrent reduction of Nb2O5 and Er2O3 addition have been prepared by melt-quenching method. Elastic properties together with structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo-overlap technique at 5 MHz and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Shear velocity, shear modulus, Young's modulus and Debye temperature were observed to initially decrease at x = 0.5 mol% but remained constant between x = 1.0 mol% to x = 2.0 mol%, before increasing back with Er2O3 addition at x = 2.5 mol%. The initial drop in shear velocity and related elastic moduli observed at x = 0.5 mol% were suggested to be due to weakening of glass network rigidity as a result of increase in non-bridging oxygen (NBO) ions as a consequence of Nb2O5 reduction. The near constant values of shear velocity, elastic moduli, Debye temperature, hardness and Poisson's ratio between x = 0.5 mol% to x = 2.0 mol% were suggested to be due to competition between bridging oxygen (BO) and NBO ions in the glass network as Er2O3 gradually compensated for Nb2O5. Further addition of Er2O3 (x > 2.0 mol%) seems to further reduce NBO leading to improved rigidity of the glass network causing a large increase of ultrasonic velocity (vL and vS) and related elastic moduli at x = 2.5 mol%. FTIR analysis on NbO6 octahedral, TeO4 trigonal bipyramid (tbp) and TeO3 trigonal pyramid (tp) absorption peaks confirmed the initial formation of NBO ions at x = 0.5 mol% followed by NBO/BO competition at x = 0.5-2.0 mol%. Appearance of ZnO4 tetrahedra and increase in intensity of TeO4 tbp absorption peaks at x = 2.0 mol% and x = 2.5 mol% indicate increase in formation of BO.  相似文献   

11.
Karl Putz 《Journal of Non》2004,337(3):254-260
Linear viscoelastic stress relaxation and calorimetric measurements were performed on a series of mixed alkali tellurite glasses of composition 0.3([xNa2O+(1−x)Li2O])+0.7TeO2 at temperatures near and above the glass transition temperature, Tg. The stress relaxation data were well described by the stretched exponential function, G(t)=G0exp[−(t/τ)β], where τ is the relaxation time, β is the distribution of relaxation times and G0 is the high frequency modulus. The fragility, determined from the temperature dependence of τ, exhibited a minimum in the middle of the mixed alkali composition. A possible connection between the kinetic and the thermodynamic dimensions of this system was established, wherein the heat capacity change at the Tg, ΔCp(Tg), and the fragility are correlated.  相似文献   

12.
The influences of different alkali and alkali-earth oxide substitutions on the properties of lithium-iron-phosphate (LIP) glasses have been studied. Na2O, K2O, MgO, CaO and BaO were used to substitute Li2O to prepare LIP glasses with molar compositions of (20 − x)Li2O − xR2O(RO) − 30Fe2O3 − 50P2O5 (x = 2.4, 4, 5.6 and 7.2). The glass transition temperature (Tg) was determined by the differential thermal analysis technique. The density and chemical durability of the prepared glasses were measured based on the Archimedes principle and the weight losses after the glasses were boiled in water. The results show that Tg decreases with the initial substitutions, whereas the density and chemical durability increase. The diminution of the aggregation effect of Li+ ions on the glass structure due to the decrease in Li+ concentration, the larger molecule weights of the substitutes, the mixed-alkali and depressing effects as well the slower mobility of substitute ions mainly contribute to the initial changes in Tg, density and chemical durability of the LIP glasses, respectively. Further increasing the amounts of substitutes brings about increasing diminution of the aggregation effect of Li+ ions and breakage of the glass network on the one hand and increasing amounts of substitutes with larger molecule weights and ion radii on the other hand. Both aspects influence the glass properties oppositely and consequently non-monotonic variations in the properties of LIP glasses with the substitutions are observed.  相似文献   

13.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

14.
Er3+-doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Ω2 = 2.95 × 10−20, Ω4 = 0.91 × 10−20, and Ω6 = 0.36 × 10−20 cm2. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.  相似文献   

15.
Low-temperature absorption and fluorescence spectra of the Yb3+ ions were measured in phosphate glass with compositions of (60-65)P2O5-(4-8)B2O3-(5-10)Al2O3-(10-15)K2O-(5-10)BaO-(0-2)La2O3-(0-2)Nb2O5-(4-8)Yb2O3 (mol%). Temperature dependence of lifetime of Yb3+:2F5/2 level was investigated. Laser performance of sample pumped by 940 nm laser diode at low temperature were presented. At 8 K, laser oscillation of diode pumped Yb3+: phosphate glass yielded a slope efficiency of 4% and a maximum power of 2 mW, the peak laser wavelength is 1001 nm.  相似文献   

16.
The crystallization kinetics of the (1 − x)TeO2-xWO3 (where x = 0.10, 0.15, and 0.20, in molar ratio) glass system was studied by non-isothermal methods using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. DSC measurements were performed at different heating rates to study crystallization kinetics of the first crystallization reactions of the glasses. XRD analysis of tungsten-tellurite glasses heat-treated above the first crystallization temperatures revealed that the first crystallization peaks attributed to the α-TeO2 and γ-TeO2 crystalline phases for 0.90TeO2-0.10WO3 and 0.85TeO2-0.15WO3 samples and α-TeO2 and WO3 crystalline phases for the 0.80TeO2-0.20WO3 sample. Avrami constants, n, calculated from Ozawa equation, were found between 1.14 and 1.44. The activation energies, EA, for the first crystallization reactions were determined by using the modified Kissinger equation as 379 kJ/mol, 288.1 kJ/mol and 228.8 kJ/mol, for 0.90TeO2-0.10WO3, 0.85TeO2-0.15WO3 and 0.80TeO2-0.20WO3 glasses, respectively.  相似文献   

17.
The suitability for effective thermal poling of the ternary tellurite glasses with the compositions (100 − 2x)TeO2-xBi2O3-xZnO (x = 5, 10 and 15, in molar percentage) for the second harmonic generation (SHG) was analyzed. The glass transitions and crystallization temperatures were studied via differential thermal analysis. The structural properties of the annealed glasses and furtherly heat-treated samples were probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. Thermal poling of the glasses was undertaken conventionally at various temperatures close to the glass transition temperature under high vacuum and the second harmonic generated signals were compared. A new technique of two stage poling was tested for comparison. The non-linear second harmonic signal of the poled glasses was analyzed using the Maker-fringe technique and it was found that the two stage poling enhanced the non-linear efficiency when compared to the conventionally poled samples.  相似文献   

18.
In this paper, optical properties of 75TeO2-20ZnO-5Na2O host glass doped with concentration of Tm3+ up to 10 %mol were studied in order to assess the most suitable rare earth content for short cavity fiber lasers. Raman spectroscopy revealed a change in the glass structure while increasing Tm3+ content, similar to the well known addition of alkali ions in a glass. Influence of the fabrication process on the OH content was determined by FTIR measurements. Refractive index of Tm3+ doped tellurite glasses was measured at five different wavelengths ranging from 533 nm to 1533 nm. Lifetime and emission spectra measurements of the Tm3+ doped tellurite glasses are reported.  相似文献   

19.
Glasses in the ternary ZnO-P2O5-TeO2 system were prepared and studied in two compositional series (100 − x)[0.5ZnO-0.5P2O5]-xTeO2 (X-series) and 50ZnO-(50 − y)P2O5-yTeO2 (Y-series) within the concentration range of x = 0-60 and y = 0-40 mol% TeO2. Their structure was studied by Raman and 31P MAS NMR spectroscopies. The incorporation of TeOx units into the structural network is associated with the depolymerisation of phosphate chain structure as revealed by both methods. At a high TeO2 content isolated PO4 tetrahedra are formed in the structure of glass series Y, while diphosphate O3P-O-PO3 groups are present in the structure of the glass series X. In the structure of glass series Y tellurium atoms form predominantly TeO3 trigonal pyramids, whereas in the X glass series TeO4 trigonal bipyramids prevail in the glass structure. The addition of TeO2 to the parent zinc metaphosphate glass results in a decrease of glass transition temperature in both compositional series associated with the replacement of stronger P―O bonds by weaker Te―O bonds.  相似文献   

20.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号