首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A redox series of cyclometalated platinum complexes based on a dinuclear motif linked by acetamidato (aam) bridging ligands, [Pt2(μ‐aam)2(ppy)2] (ppy?=2‐phenylpyridinate ion), has been synthesized. The complexes in this series are easily oxidized and reduced by both electrochemical and chemical methods, and this is accompanied by multistep changes in their optical properties, that is, multiple color changes and luminescence. Isolation of the complexes and the structural determination of three oxidation states, +2, +2.33, and +3, have been achieved. The mixed‐valent complex, with an average oxidation state of +2.33, forms a trimer based on the dinuclear motif. The mixed‐valent complex has a characteristic color owing to intervalence transitions in the platinum chain. In contrast, the divalent complex exhibits strong red phosphorescence originating from a triplet metal‐metal‐to‐ligand charge transfer (3MMLCT) state. This study demonstrates the unique chromic behavior of a redox‐active and luminescent platinum complex.  相似文献   

2.
It is shown that trigonal bipyramidal platinum(II), rhodium(I) and iridium(I) olefin complexes are better classified with the platinum(O) complex [Pt(PPh3)2(C2H4)] as class T olefin complexes than with the square-planar platinum(II) complexes such as [Pt(C2H4)Cl3]- which fall in class S. The underlying reasons for this are considered to be electronic rather than steric as was previously suggested.  相似文献   

3.
New complexes of arylplatinum(II) and arylplatinum(IV) containing a bridging ligand, 4,4′‐bipyridine, were synthesized by the reaction of starting material of platinum(II) including para‐tolyl groups,[(p‐MeC6H4)2Pt(SMe2)2], with the 4,4′‐bipyridine ligand in 1:1 molar stoichiometry. In the synthesized complexes, the ligand was bonded to the platinum center through the nitrogen donor atoms. To investigate the kinetic reaction of the platinum(II) complex with iodomethane (CH3‐I) as a reagent, the oxidative addition reaction of this reagent with Pt(II) was performed in dichloromethane and a Pt(IV) complex with the octahedral geometry was formed. The synthesized complexes have been characterized by different spectroscopic methods such as FT‐IR, 1H NMR, UV–vis, and elemental analysis. Moreover, the conductivity measurements showed nonelectrolyte characteristics for these complexes. The obtained data showed that the complexes have 1:1 metal‐to‐ligand molar ratio. Also, the oxidative addition reaction of CH3I with the arylplatinum(II) complex at different temperatures was used for obtaining kinetic parameters such as rate constants, activation energy, entropy, and enthalpy of activation using the Microsoft Excel solver. From the acquired data, an SN2 mechanism was suggested for the oxidative addition reaction.  相似文献   

4.
The bissilyl complexes 3 – 6 were synthesized by reactions of the platinum(0) complexes [Pt(η2‐C2H4)(diphos)] ( 1 : diphos = dppe; 2 : diphos = dcpe) with the disilanes 1, 1,2, 2‐tetramethyldisilane and 1, 1,2, 2‐tetraphenyldisilane via Si–Si bond activation. The molecular structures of 4 and 5 in the solid state are reported. The reaction of 2 with HPh2SiSiPh2H led to the immediate formation of the hydrido disilanyl complex [Pt(H)(SiPh2SiPh2H)(dcpe)] ( 7 ), which converts slowly into the bissilyl complex [Pt(SiHPh2)2(dcpe)] ( 6 ). The latter was reported before to be a η2‐disilene complex.  相似文献   

5.
The syntheses of platinum(II) complexes of bis(dimethylphosphinylmethylene)amine and bis(aminomethyl)phosphinic acid were investigated. In the case of bis(dimethyl-phosphinylmethylene)amine the reaction with K2[PtCl4] yields the potassium amino-trichloroplatinate K[PtCl3L] (L?=?bis(dimethylphosphinylmethylene)amine), which was characterized by multinuclear (1H, 13C, 31P, and 195Pt) NMR spectroscopy in solution. Bis(aminomethyl)phosphinic acid reacts with K2[PtCl4] under strictly controlled pH conditions to give colorless crystals of the cisplatin analog K[PtCl2L′] (L′?=?bis(aminomethyl)phosphinate). This complex was characterized by multinuclear NMR spectroscopy in solution as well as by single-crystal X-ray diffraction in the solid state. The bis(aminomethyl)phosphinate coordinates to platinum via both amino functions, thus acting as a chelating ligand.  相似文献   

6.
The conjugation of the NCN-pincer platinum(II) complexes as an oraganometallic compound and the uracil derivatives as a nucleobase was demonstrated to give the corresponding bioorganometallics. The NCN-pincer ligands bearing the 6-ethynyl-1-octyluracil, 5-ethynyl-1-octyluracil, and the furanopyrimidine moiety were synthesized. In a crystal state, the NCN-pincer ligand bearing the 6-ethynyl-1-octyluracil moiety was found to form a hydrogen-bonded dimer through intermolecular hydrogen bonds between the uracil moieties, which was connected through π-π interaction between the uracil and benzene moieties of the NCN-pincer ligand. The reaction of the NCN-pincer ligand bearing the 6-ethynyl-1-octyluracil moiety with [Pt(tolyl-4)2(SEt2)]2 led to the formation of the NCN-pincer platinum(II) complex bearing the 6-ethynyl-1-octyluracil moiety. The NCN-pincer platinum(II) complex bearing the furanopyrimidine moiety was obtained by the reaction of the NCN-pincer ligand bearing the furanopyrimidine moiety with [Pt(tolyl-4)2(SEt2)]2. The single-crystal X-ray structure determination of the NCN-pincer platinum(II) complex bearing the furanopyrimidine moiety revealed the formation of the furanopyrimidine ring and the π stack dimer between the furanopyrimidine and benzene moieties of the NCN-pincer ligand in the crystal packing. The NCN-pincer platinum(II) complexes bearing the 6-ethynyl-1-octyluracil moiety or the furanopyrimidine moiety exhibited emission in both solution and solid states.  相似文献   

7.
We have developed six dihydroxidoplatinum(IV) compounds with cytotoxic potential. Each derived from active platinum(II) species, these complexes consist of a heterocyclic ligand (HL) and ancillary ligand (AL) in the form [Pt(HL)(AL)(OH)2]2+, where HL is a methyl‐functionalised variant of 1,10‐phenanthroline and AL is the S,S or R,R isomer of 1,2‐diaminocyclohexane. NMR characterisation and X‐ray diffraction studies clearly confirmed the coordination geometry of the octahedral platinum(IV) complexes. The self‐stacking of these complexes was determined using pulsed gradient stimulated echo nuclear magnetic resonance. The self‐association behaviour of square planar platinum(II) complexes is largely dependent on concentration, whereas platinum(IV) complexes do not aggregate under the same conditions, possibly due to the presence of axial ligands. The cytotoxicity of the most active complex, exhibited in several cell lines, has been retained in the platinum(IV) form.  相似文献   

8.
The complex [Pt2(μ-mtrzt)4(mtrzt)2] (1) was synthesized from the reaction of a mixture of 4-methyl-4H-1,2,4-triazole-3-thiol (Hmtrzt) and ethylenediamine (en) with K2PtCl4 in CH3OH/H2O (2:1) as solvent. The complex [Pt2(μ-mtrzt)4] (2) was synthesized by the same procedure as described for preparation of complex 1 but in the absence of ethylenediamine. Both complexes were characterized by elemental analysis, IR,1H NMR,13C{1H}NMR, UV-Vis, as well as luminescence spectroscopy and their structures were analyzed by single-crystal X-ray diffraction method. The X-ray structure determinations show that complexes of 1 and 2 have binuclear structures in a paddle-wheel fashion with Pt-Pt distances of 2.6628(7) and 2.7977(16)Å, respectively. In complex 1, each platinum(III) atom has a distorted octahedral coordination geometry with the sulfur atom and the second platinum subunit in axial positions and two nitrogen and two sulfur atoms in equatorial positions. Also, in complex 2, each platinum(II) atom has a distorted square-pyramidal coordination geometry with the second platinum subunit in axial position and two nitrogen and two sulfur atoms in equatorial positions. In addition, intermolecular C?H···N and C?H···S hydrogen bonds in 1 and 2 as well as intermolecular anagostic C?H···Pt and C?H···π interactions in 2 are effective in the stabilization of the crystal packing of these complexes.  相似文献   

9.
γ- Irradiation of solutions of the ion PtCl62? and n-hexane (or alkene) in MeCO2H affords a π-olefin complex of platinum(II); σ-aryl complexes of platinum(IV) are formed in analogous reactions with aromatic compounds.  相似文献   

10.
New carboxylate platinum(II) complexes: syn and anti isomers of Pt(phen)(OOCMe)2 molecular complex, [Pt(phen)(NCMe)2](O3SCF3)2, as well as unusual sandwich complex [Pt(phen)2]2+ · 2syn-[Pt(phen)(OOCMe)2] where [Pt(phen)2]2+ cation is inserted between two syn-Pt(phen)(OOCMe)2 molecules were synthesized and structurally characterized by X-ray diffraction analysis. As distinct from syn- and anti-Pt(phen)(OOCMe)2 and [Pt(phen)(NCMe)2](O3SCF3)2 complexes with flat phenanthroline ligand, the phen ligands in [Pt(phen)2]2+ cation have a curved configuration. Comparative DFT analysis of geometry of model structures phen, phen+, phenH+, and [Ptphen2] n+ (n = 1, 2) showed that electron removal from phen molecule had no effect on its geometry in both free state and platinum(II) complexes.  相似文献   

11.
《中国化学快报》2023,34(2):107445
Due to the high decay rate of the non-radiative transition of long wavelengths, the molecular design of efficient and stable near-infrared (NIR) electroluminescent materials remains a big challenge. Herein, a new tetradentate cyclometalated platinum(II) complex with an NCCN coordinated framework has been developed and used as a dopant for NIR organic light-emitting diodes (OLEDs). The complex exhibited a short-lived (0.5–1.5 µs) metal-to-ligand charge transfer (MLCT) excited state in doped and neat films. The resulting NIR OLEDs (λEL = 730 nm) achieved maximum external quantum efficiency (EQEmax) of 5.2% and radiance of 74626 mW sr?1 m–2. Of note, the device exhibited excellent stability with operational lifetime of 119 h for LT90. This work demonstrated the great potential of tetradentate platinum(II) complexes in the field of NIR OLEDs.  相似文献   

12.
13.
New therapeutic options are crucially for most cancers, particularly those with poor clinical outcomes. Five new derivatives of cisplatin-containing selenone ligands with the general formula, cis-[Pt(NH3)2(Selenone)2](NO3)2 (15) were synthesized and characterized using elemental analysis, Infrared, and nuclear magnetic resonance (1H, 13C & 77Se) spectroscopy. Spectroscopic and computational data supported the coordination of selenones to platinum(II). The structures of the complexes were predicted using density functional theory calculations. Molecular docking studies were carried out using the AutoDock Tools docking program. The in vitro cytotoxicity of these complexes and cisplatin against three human cancer cell lines, HeLa, A549, and HCT116 was investigated using the MTT assay. The best candidate complex, complex 3, was subjected to mechanistic assessments, including miRNA profiling, PI3K deactivation, and induction of apoptosis. Docking studies showed that all the newly synthesized platinum(II) complexes interacted with the minor DNA groove. The synthesized complexes showed promising cytotoxic effects against the tested cell lines. Complex 3 modulated the miRNA expression signature in A549 cells. Pathway enrichment analyses of differentially expressed miRNA gene targets identified the PI3K/AKT signaling pathway as a promising target. Complex 3 inhibited PI3K activity and induced apoptosis. Collectively, our study identified promising new platinum(II) derivatives such as complex 3, paving the way for future in vitro and in vivo validations and safety studies.  相似文献   

14.
Pt/Cs-BEA materials prepared by a classical ion-exchange procedure using two Cs-BEA supports with different Cs loadings, and a reference acidic Pt/H-BEA, have been studied to investigate the effect of the framework basicity (evaluated by FT-IR of adsorbed CO2) on the state of platinum species after the initial steps (introduction of Pt complex by ion-exchange and subsequent calcination) of the preparation procedure. DR-UV data revealed that the framework basicity affects the structure of the Pt2+ complexes introduced as countercations in the zeolite by ion exchange. FT-IR spectra of adsorbed CO indicated that zeolite basicity rules the fate of platinum species in the subsequent calcination. Hence, in Pt/H-BEA essentially well dispersed Ptδ+ (4≥δ≥1) are present, while PtO x particles progressively prevail as the basic character of the zeolite increases.  相似文献   

15.
Differences in the ion flotation properties of palladium(II) and platinum(IV) chloro complexes in aqueous solutions are used to achieve separations of these metals. The anionic chloro complex PtCl2-6 is floated selectively with cationic surfactants of the type, RNR'3Br, from solutions of PdCl2-4 and various concentrations of hydrochloric acid. The palladium(II) does not float from solutions of ? 3.0 M HCl and the platinum(IV) floated from these solutions can be recovered free of palladium. However, the separation is incomplete as much of the platinum(IV) is also unfloated from these solutions. Quantitative separations are obtained by conversion of the palladium(II) to the cationic ammine, Pd(NH3)42+ with aqueous ammonia prior to flotation. The anionic chloro complex of platinum(IV) is unaffected by the presence of ammonia and is floated quantitatively with the surfactant n-hexadecyltri-n-propylammonium bromide from 0.01 M ammonia solutions.  相似文献   

16.
The cyclometalated platinum (II) complex, [Pt(ppy)(ppyH)2] OTF, 2 , in which ppy and ppyH denote the cyclometalated and non‐cyclometalated 2‐phenylpyridine ligand respectively, was prepared from the reaction of the platinum(IV) complex [PtMe3(OTF)], 1 , with 3 equiv 2‐phenylpyridine at room temperature. The cyclometalated complex 2 was characterized using 1H NMR spectroscopy. The solid state structure of 2 was further identified by single crystal X‐ray structure determination. 2 displays a green emission in solution and in solid state at room temperature and TD‐DFT calculations is used to elucidate the origin of the electronic transitions in the UV–vis spectrum of 2 .  相似文献   

17.
The transformations of platinum(II) and platinum(IV) complexes with inner-and outer-sphere ligands by the action of (+)-α-pinene and (+)-limonene were studied. Reduction of the metal complex is the main process whose rate increases in the following outer-sphere ligand series: (Me2SO)2H+ < Et3NH+ < K? < H+. The reaction of K2PtCl4 with α-pinene gave cis-terpine monohydrate and dichloro-η4-[p-mentha-1,8(9)-diene]platinum(II), and their structure was proved by X-ray analysis. The complex belongs to monoclinic crystal system, the Pt-Cl and Pt-C bonds therein have different lengths, the ClPtCl angle is 85.88°, and the C=C bond plane is orthogonal to the square coordination core. Dichloro-η4-[p-mentha-1,8(9)-diene]-platinum(II) was tested as catalyst in the hydrosilylation of acetophenone with diphenylsilane.  相似文献   

18.
Four platinum(IV) complexes containing intercalating ligands [1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy)] and ancillary ligands [(1S,2S)-diaminocyclohexane (SS-DACH) and (1R,2R)-diaminocyclohexane (RR-DACH)] were synthesized and characterized by 1H nuclear magnetic resonance, electrospray ionization mass spectrometry, X-ray crystal structure analysis, elemental analysis, ultraviolet absorption spectroscopy, circular dichroism spectroscopy, and electrochemical analysis. The reactions between [Pt(phen)(SS-DACH)Cl2]2+ and glutathione and Ac-CPFC-NH2 were investigated by high-performance liquid chromatography. [Pt(phen)(SS-DACH)Cl2]2+ was reduced to its corresponding Pt(II) complex [Pt(phen)(SS-DACH)]2+, while glutathione and Ac-CPFC-NH2 were oxidized to glutathione-disulfide and a peptide containing an intramolecular disulfide bond, respectively. The cytotoxicities of the Pt(IV) complexes against a human non-small cell lung cancer cell line (A549) and the corresponding cisplatin-resistant cell line (A549cisR) were evaluated. These Pt(IV) complexes showed a higher activity toward A549 and A549cisR than did cisplatin. Also, the cytotoxicities of the Pt(IV) complexes were higher for A549cisR than for A549 cells. Moreover, the cytotoxicities of the (SS-DACH)-liganded platinum complexes were higher than those of the (RR-DACH)-liganded platinum complexes in either A549 or A549cisR cells. Phen-liganded platinum complexes were more cytotoxic than the bpy-liganded platinum complexes. The cytotoxicities of these Pt(IV) complexes had no correlation with reduction potentials.  相似文献   

19.
The crystal structure of the title compound, [Pt(C6H7N)2(C20H16N4)](PF6)2·C3H6O·0.5H2O, is composed of a bivalent square‐planar platinum(II) complex, two PF6 counter‐ions and solvent mol­ecules. The di‐2‐pyridylquinoxaline ligands are known to confer an `L shape' on square‐planar platinum(II) complexes, which also display inter­calating properties. The structural characterization reported here is a contribution to a wide‐ranging study focused on structural and dynamical analyses of these substrates, which may provide better insight into their biological mechanisms and activities. The expected `L‐shaped' skeleton of the metallic complex combined with the antiparallel orientation of substituted pyridines (anti conformation) generates chiral objects, found in the solid state as a racemic mixture.  相似文献   

20.
The thermal decomposition of the binuclear Pt(II) complexes with acetate, propionate, valerate and izovalerate ligands were studied by TG and DTA techniques. The Pt(II) complex with acetic acid (PtAA) was stable up to 343.15 K, Pt(II) complex with propionic acid (PtPrA) was stable up to 323.15 K, Pt(II) complex with valeric acid (PtVA) was stable up to T=313.15 K and Pt(II) complex with isovaleric acid (PtIvA) was stable up to 408.15 K. The PtAA complex was investigated again after a year by thermogravimetric analysis. After the thermal decomposition of the Pt(II) complexes with carboxylic acids, only in the PtVA complex and PtAA complex (investigated after a year) the final residue contains only platinum, while in the rest complexes the solid residue was a mixture of platinum and platinum carbides (PtC2, Pt2C3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号