首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DFT B3LYP/LANL2DZ method was employed to calculate electron properties and the second-order nonlinear optical (NLO) respond of platinum (II) complexes which have been synthesized by Weinstein group. 4,7-diphenyl-1,10-phenanthroline shows the ability to push electron in these complexes. Metal Pt plays a balancing charge role. Comparing complex 1b–6b with complex a, the βvec value of complex 1b–5b is larger than one of complex a, while the βvec value of complex 6b is smaller than one of complex a. In these seven complexes, the βvec values of complexes increase with decreasing of the energy difference between HOMO and LUMO. Moreover, the electron transfers from deeper layer occupied orbitals to empty orbitals have a distinct contribution to second-order NLO coefficient. Supported by Program for Changjiang Scholars and Innovative Research Team in University, the Foundation of Jilin Provincial Excellent Youth (Grant No. 20050107) and Youth Science Foundation of Northeast Normal University (Grant No. 111494117)  相似文献   

2.
In 1987, two research groups published the first-ever reports on the synthesis of silylene complexes and presented structural evidence. Since then, a range of synthetic methods have been developed and a number of silylene complexes have been prepared. In 1988, we reported on the first base-stabilized bis(silylene) complexes that can be regarded as being masked silyl(silylene) complexes. These complexes occupy a unique position among silylene and silyl(silylene) complexes in that they provide a convenient tool for studying the reactivity of coordinated silylenes. They are stable enough to be isolated, but the bond between the silylene silicon atom and the internal base can easily be cleaved by thermal perturbation to generate real silyl(silylene) complexes. To date, a number of base-stabilized bis(silylene) complexes have been prepared in which the central metals range from group 5 to group 9. Only two base-free silyl(silylene) complexes have been prepared. One is prepared by reacting a platinum complex with a stable silylene; the other is produced by the photolysis of a tungsten complex in the presence of a hydrodisilane.  相似文献   

3.
The kinetics of alkyl group migration in RMn(CO)5 complexes ( R=CH3, C2H5 and C3H7) were studied. Isomers of CH3Mn(CO)5 with an agostic structure, an η1 structure, and an η2 structure were found to be local minima on the system's potential energy surface. Transition states for the inter-conversion of these species were also located. The activation free energy for this migration reaction was compared with experimental data and provides insights into the important steps in the overall reaction mechanism.  相似文献   

4.
Yi Luo 《Tetrahedron letters》2008,49(48):6841-6845
The B3LYP theory and scaled hypersphere search method are utilized to explore pathways of (HO)2PS2Cu-mediated CH3OOH decomposition, a model reaction of alkyl hydroperoxide with cuprous dialkyldithiophosphate [(RO)2PS2Cu]. It is found that the decomposition of CH3OOH mediated by the copper(I) complex may lead to formaldehyde and water molecules via O-O bond heterolysis and subsequent intramolecular hydrogen transfer, with retainment of the copper(I) complex. The subsequent hydrogen transfer event and formation of water may add new understanding to the (RO)2PS2Cu-mediated decomposition process of alkyl hydroperoxide. The oxygen transfer from CH3OOH to (HO)2PS2Cu moiety, as an O-O bond cleavage manner of CH3OOH, is also found to occur.  相似文献   

5.
Via NMR-spectroscopy the relative reactivity of N-heterocyclic silylenes (NHSi) and carbenes (NHC) was studied. Reaction of sterically crowded bis-N-heterocyclic Pd(0) carbene complexes with free N-heterocyclic silylenes led to complete displacement of the N-heterocyclic carbene, which is unexpected knowing that usually a silylene is a weaker bound ligand compared to a carbene. High-level DFT calculations on a small model system and the experimentally used complexes confirm the experimental findings and indicate that steric interactions play an important role in the substitution reaction.  相似文献   

6.
7.
The reductive eliminations of ArCF(3) from Pd(II) complexes bearing small- and large-bite-angle phosphane ligands have been investigated using computational methods. QM/QM' and QM/MM studies were applied and complemented with CP2K molecular dynamics investigations. The ligand substituents were varied and a decomposition analysis was performed to allow us to gain insights into the steric and electronic properties of the ligands. The greater reactivity of Xantphos-derived (Xantphos=4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complexes in the reductive elimination of ArCF(3) is primarily due to the lower repulsive effect of the phoshine substituents in the transition state than in the reactant complex, combined with the increased electronic interaction in the transition state. For DPPE (1,2-bis(diphenylphosphino)ethane), the steric effect of the ligand substituents is greater in the transition state, leading to a higher reaction barrier overall for reductive elimination. There is no direct correlation of the reactivity with the bite angle of the reactant complexes. Only for complexes with large ligand substituents may the bite angle of the Pd complexes be used as a guide for reactivity.  相似文献   

8.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

9.
Eight mononuclear complexes of the formula [M(N-N)(DHB)] and two binuclear complexes of the formula [M2(BPY)2(THB)] where M = Pd(II) or Pt(II), N-N = 2,2′-bipyridine (BPY), 2,2′-biquinoline (BIQ), 4,7-diphenyl-1,10-phenanthroline (DPP), 1,10-phenanthroline (PHEN); DHB = dianion of 3,4-dihydroxybenzaldehyde and THB = tetraanion of 3,3′,4,4′-tetrahydroxy benzaldazine were prepared and their electrochemical, spectral and photophysical properties were examined. These complexes were characterized by chemical analysis, IR and proton NMR spectroscopy. A detailed study on the absorption spectroscopy of these complexes was made. These complexes were found to show a low-energy solvatochromic ligand-to-ligand charge-transfer (LLCT) band. The electronic energies of these bands have been analyzed and compared with electrochemical data. Emission behaviour of the complexes of the series, [Pt(N-N)(DHB)], [Pt(N-N)(DHBA)] where DHBA is the dianion of 3,4-dihydroxybenzoic acid and [Pt2(BPY)2(THB)] was also investigated. These platinum complexes were found to emit from a low-energy state at low temperature and a high-energy state at room temperature. Photophysics of these complexes is also discussed.  相似文献   

10.
Theoretical studies on DNA-cleavage and DNA-binding properties of a series of Cu(II) complexes [Cu(bimda)(diimine)] 1–5 have been carried out by density functional theory (DFT). The optimized structures of Cu(II) complexes were docked into parallel, antiparallel and mixed G-quadruplexes, with which the binding energies of complexes 1–5 were obtained. The cytotoxicities of these complexes can be predicted preliminarily by the binding energies. To explore the energy changes of Cu(II) complexes in duplex DNA, the optimized structures of these complexes were docked into the duplex DNA, and the obtained docking models were further optimized using QM/MM method. The DNA-cleavage abilities of complexes 1–5 can be predicted accurately and explained reasonably by the computed intra-molecular reorganization energies of these complexes. This work reported here has implications for the understanding of the interaction Cu(II) complexes with the DNA, which might be helpful for the future directing the design of novel anticancer Cu(II) complexes.  相似文献   

11.
The reduction of Pt(IV) complexes followed by the oxidative addition of dimethyl sulfate to Pt(II) affords Cs2PtMe2Cl4, a complex of dimethylplatinum(IV). On treatment with such nucleophiles as Cl, Br, I, and PtCl4 2– in aqueous solutions at 368 K this complex undergoes reductive elimination to give MeX and PtIIMe as a transient species. The latter is further converted to methane upon protolysis, whereas in the presence of an oxidant (Na2PtCl6) it gives rise to the PtIVMe species. The kinetics of decomposition of Cs2PtMe2Cl4 in aqueous HCl-KCl systems (2M or 3M in Cl; [PtIVMe2][Cl]) were studied. The reaction takes place as anS N 2 attack of X on the carbon atom of a methyl group located with thetrans position with respect to the aqua-ligand of the [PtMe2Cl3(H2O)] complex.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 389–395, February, 1993.  相似文献   

12.
Kinetic studies were performed for the chelate ring closing and opening process of cyclopentadienyl cobalt(III) complexes having a pendant N-functional group with an amine, piperidine or pyridine moiety in the side chain. The metal-nitrogen bond energy was measured. The rate of chelation by such pendant N-functionalized side chains in diiodomonocarbonyl cobalt(III) reaction intermediates is determined by the electronic density on the donor atom and the strength of the forming chelated bond. The steric factor around the donor atom plays a secondary role. On the basis of the enthalpies and entropies obtained from the kinetic studies, the process of chelate ring closing in diiodomonocarbonyl cobalt(III) reaction intermediates is via an associative pathway involving loss of CO, while the chelate ring opening process in the resulted chelators is via a metal-nitrogen bond cleavage, solvation then metal-phosphorus bond formation pathway during substitution of PPh3. The chelator with the most rigid arm of picolyl shows a smallest steric hindrance for incoming PPh3 compared to the other two analogues.  相似文献   

13.
14.
Infrared and Raman spectra of 1,1-(methylphosphinylidene) bis(methanamine) [mpbm, (CH3)PO(CH2NH2)2] and its N,N′-coordinated Pt(II) and Pd(II) have been studied in the 4000–200 cm−1 frequency range. Ab initio calculations have been carried out for different conformations of the mpbm at HF/6-31G* level of the theory from which structural parameters, conformational stability and predicted infrared and Raman spectra have been obtained. A complete vibrational assignment of the lowest energy conformer, tttg, as well as of its N,N′-coordinated Pt(II) and Pd(II) chloro-complexes was done on the basis of the calculated frequencies, relative infrared intensities, Raman activities and potential energy distribution (PED). The theoretical predictions are compared with the experimental results where appropriate.  相似文献   

15.
The thermal decomposition of the binuclear Pt(II) complexes with acetate, propionate, valerate and izovalerate ligands were studied by TG and DTA techniques. The Pt(II) complex with acetic acid (PtAA) was stable up to 343.15 K, Pt(II) complex with propionic acid (PtPrA) was stable up to 323.15 K, Pt(II) complex with valeric acid (PtVA) was stable up to T=313.15 K and Pt(II) complex with isovaleric acid (PtIvA) was stable up to 408.15 K. The PtAA complex was investigated again after a year by thermogravimetric analysis. After the thermal decomposition of the Pt(II) complexes with carboxylic acids, only in the PtVA complex and PtAA complex (investigated after a year) the final residue contains only platinum, while in the rest complexes the solid residue was a mixture of platinum and platinum carbides (PtC2, Pt2C3).  相似文献   

16.
The thermal decomposition of the Pt(II) complexes with cyclobutane-and cycloheptanespiro-5′-hydantoins were studied by TG and DTA techniques. The Pt(II) complex with cyclobutanespiro-5′hydantoin (PtCBH) was stable up to 115°C (388 K) and Pt(II) complex with cycloheptanespiro-5′-hydantoin (PtCHTH) was stable up to 150°C (423 K). After the thermal decomposition of PtCBH the solid residue was platinum, while the decomposition of PtCHTH gave a mixture of platinum carbides (PtC2, Pt2C3).  相似文献   

17.
Two new iridium (III) complexes ( Ir1-Ir2 ) bearing different fluorinated 2-(biphenyl-4-yl)-2H-indazole-based compounds as cyclometalated ligands and Xantphos as an ancillary ligand were synthesized and fully characterized. The ultraviolet (UV)–vis absorption, photoluminescence, and electrochemistry properties were studied. The single crystal structures of Ir1-Ir2 were determined by X-ray diffraction, showing each adopts the distorted octahedral coordination geometry. To gain insights into the lowest energy electron transitions and the lowest triplet excited states, density functional theory calculations were used to further investigate the origination. Two complexes emit yellow photoluminescence with quantum yields of 49.7–72.5% in solution at room temperature. Their Commission Internationale de L'Eclairage color coordinates are (0.42, 0.53) and (0.39, 0.47), respectively.  相似文献   

18.
《Comptes Rendus Chimie》2014,17(9):905-912
The 2,6-bis(benzimidazol-2′-ylthiomethyl)pyridine (L) ligand and its palladium(II) complexes [Pd(L)X]X (X = Cl, Br, and I) have been synthesized and characterized by spectroscopic data acquisition. The ligand (L) was prepared by conventional heating as well as by microwave irradiation. Microwave irradiation shows additional features, including an easy workup, a much faster reaction and higher yields. The molar conductivity data reveal that the complexes form a 1:1 electrolyte in DMSO. The geometries, ground-state energetics and vibrational spectra of (L) and of its complexes have been elucidated, in terms of quantum chemical calculations. In the mononuclear complexes, the palladium atom is coordinated to three nitrogen atoms and one terminal halogen atom in a slightly distorted square planar arrangement. The present elemental analyses, FT–IR (mid, far), 1H and 13C NMR spectra are in good accordance with the square planar geometry around the Pd ion. The thermal behaviors of the complexes have been assessed by thermal gravimetric and differential thermal analyses.  相似文献   

19.
《Comptes Rendus Chimie》2017,20(5):467-474
A distorted octahedral nickel(II) complex, [Ni(2-amino-3-(1H-imidazol-4-yl)propanoic acid)2] (1), has been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Geometry optimization in the gas phase and pyridine together with Hirshfeld surface and reduced density gradient analyses reveal that this complex shows different distortions from octahedral in the gas, liquid, and solid phases. The reason seems to be because of the presence of two intramolecular NH⋯O weak interactions in the gas phase and two sets of rather strong intermolecular NH⋯O and CH⋯O interactions in the solid phase. Time-dependent density functional theory (TD-DFT) calculations suggest that these different distortions result in different electronic absorption spectra.  相似文献   

20.
The structures of three new Cu(II) complexes with pyridine carboxamide ligands (Me2bpb, 6-Me2-Mebpb, and 6-Me2-Me2bpb) have been determined. 6-Methyl-substituted pyridyl bpb ligands produced dimeric compounds with Cu(II) ions, and weak interactions between dimers can make even polymeric compounds, while bpb ligands without 6-methyl substitution produced monomeric Cu(II) complexes. The large distortion effects of 6-methyl-substitution are shown in Cu(II) complexes with 6-methyl-substituted pyridyl bpb ligands. This result suggests that the steric effect of 6-methyl-substitution plays important role for distortion of the structure, and 6-methyl-substitution can also influence to make polymeric compounds with interactions between Cu(II) ions and neighbor carbonyl oxygen atoms. In addition, the voltammetric behaviors of the Cu complexes were examined and classified into two groups, with/without 6-methyl group. The complexes without 6-methyl group show reversible redox waves at −1.6 V, and the complexes with 6-methyl group do irreversible redox ones at −1.3 V, indicating that the presence of the methyl group of 6-position of the complex makes the reduction of the complexes easier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号