首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new organotin (IV) complexes with 3-hydroxy-2-pyridinecarboxylic acid (3-OH-2-picH) of two types: R2SnCl(3-OH-2-pic) (I) (R = Me 1, n-Bu 2, Ph 3, PhCH24) and R2 Sn(3-OH-2-pic)2 (II) (R = Me 5, n-Bu 6, Ph 7, PhCH28)have been synthesized by reactions of diorganotin (IV) dichloride with 3-hydroxy-2-pyridinecarboxylic acid in the presence of sodium ethoxide. All complexes are characterized by elemental analyses, IR spectra and NMR spectra analyses. Among them, complexes 1, 5, 6 and 7 are also characterized by X-ray crystallography diffraction analyses. Complex 1 is a 1D polymeric chain with six-coordinate tin atoms and the packing of complex 1 is stabilized by the C-H?Cl intermolecular weak interactions, thus a 2D network of 1 is formed. Complex 5 is also a 1D polymeric chain with seven-coordinate tin atoms. Complex 6 is a zigzag polymeric chain linked by Sn?O intermolecular weak interactions. Complex 7 is a monomeric complex with distorted octahedral geometry.  相似文献   

2.
Seven Schiff base adducts of organotin(IV), RSnLCl2, which L is o-vanillin-2-thiophenoylhydrazone, and R is n-C4H9 (1), Me (2), Ph (3), and [R2SnL], which L is o-vanillin-2-thiophenoylhydrazone, R is n-C4H9 (4), Me (5), Ph (6), PhCH2 (7) have been synthesized. Those products were characterized by elemental analysis, IR, 1H, 13C and 119Sn NMR spectra. The crystal and molecular structures of compounds 1, 4, and 6 have been determined by X-ray single crystal diffraction. In the crystal of compound 1 the tin atom is rendered six-coordinate in a distorted octahedral configuration by coordinating with the N atom of the Schiff base ligand, in compounds 4 and 6 the central tin atoms are five-coordinate in distorted trigonal-bipyramidal geometry and the comparison of the IR spectra reveal that disappearance of the bands assigned to carboxyl unambiguously conforms the ligand coordinate with the tin atom in enol form.  相似文献   

3.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

4.
The reaction of the Baylis-Hillman adducts 1b-f derived from o-nitrobenzaldehydes in trifluoroacetic acid in the presence of triflic acid (0.2 equiv.) afforded 3-substituted-4-hydroxyquinoline N-oxides 2b-e and 2a in good to moderate yields. The reaction mechanism was evidenced by the experiment with 1f, the Baylis-Hillman adduct of 2-nitrobenzaldehyde N-tosylimine, as the one involving N-hydroxyisoxazoline as the key intermediate.  相似文献   

5.
We have developed shelf- and air-stable ortho-stannylated aniline reagents that can directly be coupled with alkenyl and aryl halides via Migita-Kosugi-Stille cross-coupling. We report (i) the efficient preparation of o-(tributylstannyl)aniline (2a) and o-(trimethylstannyl)aniline (2b), (ii) the comparison of the reactivities of 2a and 2b with those of related organostannanes in cross-coupling reaction with an alkenyl halide, and (iii) the cross-coupling of 2a and 2b with a series of arylhalides and triflate.  相似文献   

6.
Reaction of guaiazulene (1) with o-formylbenzoic acid (2) in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gives the corresponding monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), quantitatively, which upon treatment with aq NaHCO3 leads to 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in 96% isolated yield. Similarly, reaction of 1 with 2 in methanol under the same conditions as the above reaction affords two kinds of inseparable monocarbenium-ion compounds, 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4) with an equilibrium between them, which upon reaction with a solution of NaBH4 in ethanol at 25 °C for 30 min leads to 5 in 46% isolated yield and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield. Along with the 1H and 13C NMR spectral properties of a solution of 5 in trifluoroacetic acid-d1 at 25 °C, whose molecular structure is converted to a ca. 1:1 equilibrium mixture of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, comparative studies on the 1H and 13C NMR spectral properties of 7 and 8 with those of the monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), 5, and 6 are reported. From these NMR studies, it can be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of 7 apparently is transferred to the seven-membered ring, generating a resonance form of the 3-guaiazulenylium-ion structure η′, and the same result can be inferred for the previously documented monocarbenium-ion compounds A-I. Moreover, referring to a comparative study on the C-C bond lengths of A observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for A calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3 calculated using PM3 is described.  相似文献   

7.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

8.
Bis(silylamino)tin dichlorides 1 [X2SnCl2 with X=N(Me3Si)2 (a), N(9-BBN)SiMe3 (b), N(tBu)SiMe3 (c), and N(SiMe2CH2)2 (d)] were prepared from the reaction of two equivalents of the respective lithium amides (Li-a-d) with tin tetrachloride, SnCl4, or from the 1:1 reaction of the respective bis(amino)stannylene with SnCl4. The compounds 1 react with two equivalents of lithium alkynides LiCCR1 to give the di(1-alkynyl)-bis(silylamino)tin compounds X2Sn(CCR1)2, 2 (R1=Me), 3 (R1=tBu), and 4 (R1=SiMe3). Problems were encountered, mainly with LiCCtBu as well as with 1b, since side reactions also led to the formation of 1-alkynyl-bis(silylamino)tin chlorides 5-7 and tri(1-alkynyl)(silylamino)tin compounds 8 and 9. 1,1-Ethylboration of compounds 2-4 led to stannoles 10, 11, and in the case of propynides, also to 1,4-stannabora-2,5-cyclohexadiene derivatives 12. The molecular structure of the stannole 11b (R1=SiMe3) was determined by X-ray analysis. The reaction of 2a and d with triallylborane afforded novel heterocycles, the 1,3-stannabora-2-ethylidene-4-cyclopentenes 14. These reactions proceed via intermolecular 1,1-allylboration, followed by an intramolecular 1,2-allylboration to give 14, and a second intramolecular 1,2-allylboration leads to the bicyclic compounds 15.  相似文献   

9.
trans-Bis(ferrocenecarboxylato)(5,10,15,20-tetraphenylporphyrinato)tin(IV) complex Sn(TPP)(FcCOO)2 has been synthesized and fully characterized. The X-ray structural analysis of Sn(TPP)(FcCOO)2 reveals that the tin(IV) center is octahedrally coordinated by the porphyrin occupying the square base and axial coordination of two ferrocenecarboxylato ligands in an anti orientation with respect to each other. The Fe(II) center of the ferrocenecarboxylato ligand lies 5.7 Å from the tin(IV) center of the porphyrin ring. The cyclic voltammogram of Sn(TPP)(FcCOO)2 exhibits three distinctive redox couples consisting of one oxidative wave and two reductive waves due to the ferrocenecarboxylato ligands and the porphyrin ring, respectively.  相似文献   

10.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

11.
Three diruthenium(III) compounds Ru2(L)4Cl2, where L is mMeODMBA (N,N′-dimethyl-3-methoxybenzamidinate, 1a), DiMeODMBA (N,N′-dimethyl-3,5-dimethoxy benzamidinate, 1b), or DEBA (N,N′-diethylbenzamidinate, 1c), were prepared from the reactions between Ru2(OAc)4Cl and respective HL under reflux conditions. Metathesis reactions between 1 and LiC2Y resulted in bis-alkynyl derivatives Ru2(L)4(C2Y)2 [Y=Ph (2), SiMe3 (3), SiiPr3 (4) and C2SiMe3 (5)]. The parent compounds 1 are paramagnetic (S=1), while bis-alkynyl derivatives 2-5 are diamagnetic and display well-solved 1H- and 13C-NMR spectra. Molecular structures of compounds 1b, 1c, 2c, 3c and 4b were established through single crystal X-ray diffraction studies, which revealed RuRu bond lengths of ca. 2.32 Å for parent compounds 1 and 2.45 Å for bis-alkynyl derivatives. Cyclic voltammograms of all compounds feature three one-electron couples: an oxidation and two reductions, while the reversibility of observed couples depends on the nature of axial ligands.  相似文献   

12.
1-Benzyl-3-(bromomethyl)-2(1H)-pyrazinone was converted to [3,4-c] sulfolene pyridinone 8a and further (1- or 3-) substituted derivatives having a dienophilic side chain on the sulfolene ring. Thermolytic extrusion of sulfur dioxide from o-QDM precursor 8 led to generation of 3,4-dimethylene-2(1H)-pyrazinone 9, which was reacted in situ with various dienophiles. Thermolysis of the substituted precursors resulted in intramolecular cycloaddition of the corresponding o-QDM intermediates  相似文献   

13.
New catecholate Sb(V) complexes triphenyl(3,6-di-tert-butylcatecholato)antimony(V) Ph3Sb(3,6-DBCat) (1) and triphenyl(perchloroxanthrenecatecholato)antimony(V) Ph3Sb(OXCatCl) (2) were synthesized by the oxidative addition reaction of corresponding o-quinones (3,6-di-tert-butyl-o-benzoquinone and perchloroxanthrenequinone-2,3) with triphenylantimony. Catecholates 1 and 2 can alternatively be synthesized by reacting the appropriate thallium catecholate with triphenylantimony dichloride. The oxidative addition reaction of an equimolar ratio of 4,4′-di-(3-methyl-6-tert-butyl-o-benzoquinone) and triphenylantimony yielded 4-(2-methyl-5-tert-butyl-cyclohexadien-1,5-dion-3,4-yl)-(3-methyl-6-tert-butyl-catecholato)triphenylantimony(V) Ph3Sb(Cat-Q) (3); in the case of a 1:2 molar ratio, complex 4,4′-di-[(3-methyl-6-tert-butyl-catecholato)triphenylantimony(V)] Ph3Sb(Cat-Cat)SbPh3 (4) resulted. Complexes 1-4 were characterized by IR- and 1H NMR spectroscopy. Molecular structures of 1, 2 and 4 were determined by X-ray crystallography to be a distorted tetragonal-pyramidal.  相似文献   

14.
Regioselective Diels-Alder reactions of masked o-benzoquinones (MOBs) 2a-i derived from the corresponding 2-methoxyphenols 1a-i with acrylonitrile leading to highly functionalized bicyclo[2.2.2]octenone derivatives in high yields are described.  相似文献   

15.
Oxidation of the natural antioxidant hydroxytyrosol (1) with peroxidase/H2O2 in phosphate buffer at pH 7.4 led to the formation of two main ethyl acetate-extractable products. These could be isolated by preparative TLC after reduction and acetylation, and were identified as the tetraacetyl derivative of 2-(2,4,5-trihydroxyphenyl)ethanol (3) and the heptaacetyl derivative of the pentahydroxybiphenyl 4 by 2D NMR and MS analysis. Similar oxidation of 4-methylcatechol gave, after the same work-up, the acetylated derivatives of 1,2,4-trihydroxy-5-methylbenzene (5) and the pentahydroxybiphenyl 6. Mechanistic experiments suggested that hydrogen peroxide affects the course of the oxidation of 1 by adding to the first formed o-quinone to give a hydroxyquinone intermediate. This could bring nucleophilic attack to the o-quinone of 1 to give the dimer 4. These results disclose novel oxidative pathways of 4-alkylcatechols and provide an improved chemical basis to enquire into the mechanism of the antioxidant action of 1.  相似文献   

16.
Reaction of [Ru(Cp)(CH3CN)3](PF6) with P(o-tolyl)3 affords [Ru(Cp){(η6-o-tolyl)P(o-tolyl)2}](PF6) (4) in which the P-atom is not coordinated to the metal. The solid-state structure of 4 has been determined. A related reaction with P(p-tolyl)3 reveals a small quantity [Ru(Cp){(η6-p-tolyl)P(o-tolyl)2}](PF6), in solution, but mostly the expected bis-phosphine complex. Reaction of the Ru(IV) dication, [Ru(Cp)(η3-PhCHCHCH2)(DMF)2](PF6)2, with P(o-tolyl)3 gives a mixture of the phosphonium salt, C6H5CHCHCH2P(o-tolyl)3 (9) and the dication [Ru(Cp) (η6-C6H5CHCHCH2P(o-tolyl)3)](PF6)2 (10). Salt 9 forms via attack of the P-atom on the allyl ligand. The latter product results from complexation of 9 via the phenyl group of the former allyl ligand. It would seem that the sterically demanding P(o-tolyl)3 ligand is not readily compatible with the Ru(Cp) fragment, in either the +2 or +4 oxidation state. Detailed NMR studies are reported.  相似文献   

17.
2,4-Bis(trimethylsilyloxy)pyrimidines 1/2 on reaction with o-chlorobenzyl chlorides in 1,2-dichloroethane in the presence of I2 undergo single step 1,3-dibenzylation to provide 1,3-bis(o-chlorobenzyl)pyrimidine-2,4-diones. The reactions of 1 with allyl/alkyl bromide followed by subsequent addition of o-chlorobenzyl chloride provide a simple one-pot synthesis of 1,3-unsymmetrical pyrimidine-2,4-diones. Amongst these, 1,3-bis(o-chlorobenzyl)uracil (6a) shows anti-HIV-1 activity.  相似文献   

18.
New organobimetallic compounds CatSn[CpM(CO)n]2 (2-4) were obtained by the insertion of CatSn(II) (1) into the metal-metal bond of [CpM(CO)n]2 (Cat - 3,6-di-tert-butylcatecholate dianion; M = Fe (2), n = 2; M = Mo (3), W (4), n = 3). The structure of CatSn[CpMo(CO)3]2 was determined by X-ray analysis. The oxidation of compounds 2-4 with silver(I) triflate was found to produce stable paramagnetic o-semiquinolate derivatives which keep both Sn-M bonds. New paramagnetic tin(IV) complexes were investigated by EPR spectroscopy.  相似文献   

19.
The new complexes [Ni(Hbstbh)2(en)] (1) and [Ni(Hpchce)(o-phen)2]Cl·CH3OH·H2O (2) with N′-benzoyl hydrazine carbodithioic acid benzyl ester (H2bstbh) and [N′-(pyridine-4-carbonyl)-hydrazine]-carbodithioic acid ethyl ester (H2pchce) have been synthesized, containing ethylenediamine (en) or o-phenanthroline (o-phen) as coligands. The ligands and their complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. [Ni(Hbstbh)2(en)] (1) and [Ni(Hpchce)(o-phen)2]Cl·CH3OH·H2O (2) crystallized in the monoclinic and triclinic systems, space group C2/c and P-1, respectively. The (N, O) donor sites of the bidentate ligands chelate the Ni(II) center and form a five-membered CN2ONi ring. The resulting complexes are paramagnetic and have a distorted octahedral geometry.  相似文献   

20.
Novel mercury(II) compounds of 3-hydroxypicolinic acid (HpicOH; IUPAC name: 3-hydroxy-2-pyridinecarboxylic acid) were synthesized and characterized. HgCl(picOH) (1) and HgBr2(HpicOH) (2) were obtained as reaction products from the reaction of the corresponding mercury(II) halide with HpicOH, irrespective of the molar ratio of the reactants. From the reaction of HpicOH and mercury(II) acetate, Hg(picOH)2 (3) was obtained, while mercury(II) nitrate monohydrate gave the 1/1 solvate with water Hg(picOH)2 · H2O (3a). Infrared, 1H and 13C NMR spectroscopic data were analyzed for complexes 1, 2 and 3. X-ray crystal structure analysis of 1 and 2 revealed their polymeric nature and different coordination modes of HpicOH. In 1 the deprotonated picolinic acid is N,O-chelating and bridging, while in 2 HpicOH is a O-monodentate weakly bound ligand. Compound 1 consists of HgCl(picOH) moieties with two linear covalent bonds, Hg–N 2.143(4) and Hg–Cl 2.298(1) Å, and four additional Hg?O contacts (2.460(3)–2.904(3) Å) in which both oxygen atoms from the carboxylic group are bridging and involved in coordination to three neighboring mercury atoms, thus forming infinite layers. The coordination of mercury is 2 + 4. 2 consists of {HgBr2(HpicOH)} moieties, which are linked into chains by means of mercury to bromine secondary long range interactions. The coordination sphere of mercury can be described as irregular 2 + 3 formed by two covalently bonded bromine atoms (Hg–Br 2.277(1) and 2.366(1) Å), two bridging bromine atoms (Hg?Br 3.309(1) and 3.247(1) Å) and by the HpicOH ligand attached to mercury in the zwitterionic form via the carboxylic oxygen atom (Hg?O 2.602(7) Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号