首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Non》2006,352(30-31):3326-3331
A series of tellurite glasses containing Fe2O3 with the nominal composition x(Fe2O3)–(1−x)(TeO2), where x = 0.05, 0.10, 0.15, and 0.20, have been synthesized and investigated using X-ray photoelectron spectroscopy (XPS) and magnetization techniques. The Te 3d core level spectra for all glass samples show symmetrical peaks at essentially the same binding energies as measured for TeO2 indicating that the chemical environment of the Te atoms in these glasses does not vary significantly with the addition of Fe2O3. Furthermore, the full-width at half-maximum (FWHM) of each peak does not vary with increasing Fe2O3 content which suggests that the Te ions exist in a single configuration, namely TeO4 trigonal bipyramid (tbp). The O 1s spectra are narrow and symmetric for all compositions such that oxygen atoms in the Te–O–Te, Fe–O–Fe and Te–O–Fe configurations must have similar binding energies. The analysis of the Fe 3p spectra indicates the presence of Fe3+ ions only, which is consistent with the valence state of the Fe ions determined from magnetic susceptibility measurements.  相似文献   

2.
A series of new glasses of 70TeO2-(20 − x) ZnO-xPbO − 5La2O3-2.5K2O-2.5Na2O (mol%) doped with Yb3+ is presented. Thermal stability, spectra and laser properties of Yb3+ ions have been measured. It found that 70TeO2-15PbO-5ZnO-5La2O3-2.5K2O-2.5Na2O composition glass had fine stability ((TxTg)>190 °C), high-stimulated emission cross-section of 1.25 pm2 for the 2F5/2 → 2F7/2 transition and existed measured fluorescence lifetime of 0.94 ms and the broad fluorescence effective linewidth of 72 nm. Evaluated from the good potential laser parameters, this system glass is excellent for short pulse generation in diode pumped lasers, short pulse generation tunable lasers, high-peak power and high-average power lasers.  相似文献   

3.
P. Charton 《Journal of Non》2004,333(3):307-315
The thermodynamic properties of transparent glasses prepared in the TeO2-Ga2O3 system were investigated by differential scanning calorimetry. The change of the thermal parameters as a function of the chemical composition is discussed. Raman and both Te LIII and Ga K edge X-ray absorption spectroscopies at room temperature were used to examine the short range order. Analyses of the spectra suggest that the addition of Ga2O3 content to the TeO2 glass matrix induces the transformation of trigonal bipyramids (TeO4E, E=lone electronic pair 5s2 of Te) to trigonal pyramids (TeO3E) with formation of Te-O-Ga bridging bonds. Furthermore, Ga K edge XANES and EXAFS studies show that Ga atoms exhibit both tetrahedral (GaO4) and octahedral (GaO6) environments.  相似文献   

4.
G. Upender 《Journal of Non》2011,357(3):903-909
Infrared, EPR and optical absorption studies on (90-x)TeO2-10GeO2-xWO3 (7.5 ≤ x ≤ 30) glasses containing Cu2+ spin probe have been carried out. The Infrared spectral studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3 + 1], [WO4], [WO6] and [GeO6] units in the disordered manner. Physical parameters such as density (ρ), molar volume (Vm), oxygen packing density (OPD), oxygen molar volume (Vo), optical basicity (Λ), oxide ion polarizability (αO2−), inter ionic distances and the concentration of ions per unit volume of Te, Ge, W, Cu and O have been determined. The spin-Hamiltonian parameters (g||, g and A||) of Cu2+ ions in the present glasses have been estimated from EPR spectra at 300 K. Bonding parameters such as α2, β12, β2, Γσ, and Γπ have been calculated from both optical absorption and EPR data. The observed variations in spin-Hamiltonian parameters and bonding parameters have been correlated to the structural modifications due to the WO3 incorporation into the TeO2 glass network at constant 10 mol% GeO2 content.  相似文献   

5.
The non-linear optical performance and structure of TeO2-Nb2O5-ZnO glasses was investigated as a function of ZnO content. The third-order non-linear optical susceptibility (χ(3)) as measured by a Degenerate Four Wave Mixing (DFWM) method, initially increased with increasing ZnO content to about 8.2 × 10−13 esu for a glass containing 2.5 wt% ZnO, and then decreased to 5.9 × 10−13 esu as the ZnO content increased to 10 wt%. There was no noticeable change as the ZnO content increased from 10 to 15 wt%. The non-linear optical response time, which caused electron cloud deformation, was from 450 to 500 fs. The structure of these glasses as analyzed by Raman spectroscopy and FT-IR spectra, was affected by the addition of ZnO up to 5 wt%, when, it is believed, the Zn2+ ions occupied the interstitial positions in the glass network by replacing the Nb5+ ions. The replaced Nb5+ ions occupied the network forming positions as the Te4+ ions. Increasing ZnO > 5 wt% did not have any further effect on the glass structure.  相似文献   

6.
The electron spin resonance spectra of Mn2+ ions have been studied in GexTe100?x with x = 15, 17.5 and 20, and Ge20?xTe80Six with 0 ?x? 20. All samples are found to exhibit six hyperfine lines centered at g = 4.3 with hyperfine interaction constant A = 56 × 10?4cm?1. The g = 4.3 line is interpreted as being caused by Mn2+ ions incorporated in the amorphous network and surrounded by four Te atoms in an arrangement of orthorhombic symmetry. Some of the samples of GeTe show a g = 2.0 line. This line also appears after heat treatment in air at temperatures above the glass transition temperature. It is concluded that the g = 2.0 line is caused by Mn2+ ions in phase separated microcrystalline or concentrated regions of MnO in the glass.  相似文献   

7.
Copper oxidation states, structure and properties of xCuO · (50-x)PbO · 50B2O3 glasses were investigated. Both infrared (IR) and 11B magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies were employed to determine the tetrahedral BO4 fraction in the glasses as a function of CuO content. IR study indicates that the replacement of Pb2+ by Cu2+ ions increases the BO3 units by converting BO4- containing groups into ring type metaborate groups. The oxidation states of copper ions in the glasses have been studied using both X-ray photoelectron spectroscopy (XPS) and the wet chemical method. For high CuO containing (?30 mol%) glasses, high Cu+ ion concentrations (Cu+/Cutot.>0.3) result in a relatively slow disproportionation of B4-containing groups because of the small coordination number of Cu+ compared to Cu2+ ions. Effects of both glass structure and redox states of copper ions on glass properties including density, Vickers’ hardness, coefficient of thermal expansion, and chemical durability have been discussed.  相似文献   

8.
Copper ions incorporated into alkaline earth zinc borate glasses 10RO + 30ZnO + 60B2O3 (R = Mg, Ca and Sr) and 10SrO + (30 ? x)ZnO + 60B2O3 + xCuO (x = 0, 0.1, 0.3, 0.5, and 0.7 wt.%) were characterized by electron paramagnetic resonance (EPR), optical absorption and FTIR techniques. The EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The values of spin-Hamiltonian parameters indicate that the Cu2+ ions in alkaline earth zinc borate glasses were present in octahedral sites with tetragonal distortion. The spin concentration (N) participating in resonance was calculated as a function of temperature for strontium zinc borate (SrZB) glass sample containing 0.7 wt.% of Cu2+ ions and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility (χ) was calculated at different temperatures and the Curie constant was evaluated from the 1/χ-T graph. The optical absorption spectra of these samples show only one absorption band. The optical band gap energies (Eg) and Urbach energy (ΔE) are calculated from their ultraviolet edges. The FTIR studies show different stretching and bending vibrations of alkaline earth zinc borate glasses.  相似文献   

9.
The suitability for effective thermal poling of the ternary tellurite glasses with the compositions (100 − 2x)TeO2-xBi2O3-xZnO (x = 5, 10 and 15, in molar percentage) for the second harmonic generation (SHG) was analyzed. The glass transitions and crystallization temperatures were studied via differential thermal analysis. The structural properties of the annealed glasses and furtherly heat-treated samples were probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. Thermal poling of the glasses was undertaken conventionally at various temperatures close to the glass transition temperature under high vacuum and the second harmonic generated signals were compared. A new technique of two stage poling was tested for comparison. The non-linear second harmonic signal of the poled glasses was analyzed using the Maker-fringe technique and it was found that the two stage poling enhanced the non-linear efficiency when compared to the conventionally poled samples.  相似文献   

10.
N. Baizura 《Journal of Non》2011,357(15):2810-2815
Tellurite 75TeO2-(10 − x)Nb2O5-15ZnO-(x)Er2O3; (x = 0.0-2.5 mol%) glass system with concurrent reduction of Nb2O5 and Er2O3 addition have been prepared by melt-quenching method. Elastic properties together with structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo-overlap technique at 5 MHz and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Shear velocity, shear modulus, Young's modulus and Debye temperature were observed to initially decrease at x = 0.5 mol% but remained constant between x = 1.0 mol% to x = 2.0 mol%, before increasing back with Er2O3 addition at x = 2.5 mol%. The initial drop in shear velocity and related elastic moduli observed at x = 0.5 mol% were suggested to be due to weakening of glass network rigidity as a result of increase in non-bridging oxygen (NBO) ions as a consequence of Nb2O5 reduction. The near constant values of shear velocity, elastic moduli, Debye temperature, hardness and Poisson's ratio between x = 0.5 mol% to x = 2.0 mol% were suggested to be due to competition between bridging oxygen (BO) and NBO ions in the glass network as Er2O3 gradually compensated for Nb2O5. Further addition of Er2O3 (x > 2.0 mol%) seems to further reduce NBO leading to improved rigidity of the glass network causing a large increase of ultrasonic velocity (vL and vS) and related elastic moduli at x = 2.5 mol%. FTIR analysis on NbO6 octahedral, TeO4 trigonal bipyramid (tbp) and TeO3 trigonal pyramid (tp) absorption peaks confirmed the initial formation of NBO ions at x = 0.5 mol% followed by NBO/BO competition at x = 0.5-2.0 mol%. Appearance of ZnO4 tetrahedra and increase in intensity of TeO4 tbp absorption peaks at x = 2.0 mol% and x = 2.5 mol% indicate increase in formation of BO.  相似文献   

11.
Using the ionic liquid (IL), 1‐butyl‐3‐methyl‐imidazole tetrafluoroborate, and the precursor Cu7Cl4(OH)10·H2O, series of phase‐manipulable Cu‐based nanomaterials were synthesized by hydrothermal and microwave assisted routes, respectively. The structural characters of the as‐prepared CuO, CuO/Cu2O composites and pure Cu nanoparticles were investigated by XRD, SEM, TEM and HRTEM, and their surface photovoltaic properties were studied by surface photovoltage spectra. Via hydrothermal route Cu2+ ions were found to be reduced gradually into Cu+ and subsequently Cu0 with increasing the IL, and various phase ratio of CuO, Cu2O and Cu composite nanosheets and pure Cu nanoparticles were obtained. This implies that the IL could function as both a reductant in the oxygen‐starved condition and a template for the nanosheet products. The 1H‐NMR result of the IL supports it being a reductant. In microwave assisted route, however, only monoclinic single crystalline CuO nanosheets were obtained, which indicates the IL being a template only in oxygen‐rich condition. Therefore, the crystal phase, composition and morphology of the Cu‐based products could be controlled by simply adjusting the quantity of the IL and oxygen in solution routes. The molecular structure of the IL after oxidation reactions was investigated by 1H‐NMR and a possible reaction mechanism was proposed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
S. Rada  M. Culea  E. Culea 《Journal of Non》2008,354(52-54):5491-5495
Glasses in the system (1 ? x)TeO2 · xB2O3 glasses (with x = 0.3 and 0.4) have been prepared from melt quenching method. The structural changes were studied by FTIR spectroscopy and DFT calculations. From the analysis of the FTIR spectra it is reasonable to assume that when increasing boron ions content the tetrahedral [BO4] units are gradually replaced by trigonal [BO3] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network, would depolymerize of borate chains and would necessite quite a radical rearrangement of the network formed by the [TeO6] octahedral. This is possible considering that tellurium dioxide brings stoichiometrically two oxygen atoms in [TeO4] and needs an additional oxygen atom for the formation of [TeO6] octahedra. This additional oxygen atom is evidently taken off from the boron co-ordination and thus boron atoms transfer their [BO4] co-ordination into [BO3] co-ordination. We used the FTIR spectroscopic data in order to compute two possible models of the glasses matrix. We propose two possible structural models of building blocks for the formation of continuous random network glasses used by density functional theory (DFT) calculations.  相似文献   

13.
A detailed study on a novel TeO2-BaO-SrO-Ta2O5 glass system developed for photonic device applications is reported in this paper. The glass transition and crystallization temperatures could be selected by varying the Ta2O5 content in this glass system. This glass system is found to have good thermal stability among tellurite glasses. Raman spectroscopy has been used as a tool to analyze the structural details of this technologically important glass system. In addition to the TeO4 trigonal bipyramid and TeO3 trigonal pyramid structural units, glasses in this system revealed the presence of an additional Raman band attributed to TaO6 octahedra. The Raman bandwidth of the present glasses are broader compared to the conventional tellurite glasses by 35%. The influence of a gradual addition of the modifier oxides on the coordination geometry of tellurium atoms has been elucidated. Unlike the other tellurite glasses, even at higher modifier concentrations the TeO4 structural units dominate in the glass network compared to TeO3 trigonal pyramids. The ratio of TeO4/TeO3 structural units was discussed for different series of glass compositions.  相似文献   

14.
《Journal of Non》2006,352(36-37):3947-3951
As evidenced by O1s X-ray photoelectron spectroscopy, there are three kinds of oxygen atoms in Li0.25Na0.25Pb0.25PO3−3x/2Nx oxynitride phosphate glasses (0 < x  0.67): (i) bridging oxygens (BO) which interconnect the P(O, N)4 tetrahedral units of the glass network (ii) non-bridging oxygens (NBO) which coordinate the modifier cations and (iii) oxygen atoms, also non-bridging, which belong to PO4 tetrahedra involved in the coordination sphere of Pb2+. The variation of their relative proportions as the nitrogen content increases is explained according to the nitridation mechanism previously proposed for this series of glasses. Moreover, the variation of the BO/NBO ratio confirms that the nitrogen/oxygen substitution taking place during nitridation obeys the simple chemical equivalences already stated.  相似文献   

15.
Glasses in the ternary system xCuO?(100 ? x)[55B2O3·45ZnO] (0  x  20 mol%) have been prepared by melting at 1200 °C and rapidly cooling at room temperature. The effect of copper ions addition in 55B2O3·45ZnO glass matrix together with the matrix effect on paramagentic behavior has been investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), electron paramagnetic resonance (EPR), ultraviolet–visible (UV–VIS) spectroscopy and density measurements. The increase of the number of non-bridging oxygen (NBO) atoms as a function of CuO content in these glasses leads to the decrease of glass polymerization which reduces the stability of the glasses and favors the association of copper ions in clusters. This leads to the major changes of structural and optical properties of the studied glasses as can be seen from the data obtained by FTIR and EPR spectroscopies.  相似文献   

16.
Raman and infrared spectroscopy have been employed to investigate the 99.5%[xB2O3(1−x)Bi2O3]0.5%CuO glasses with different Bi/B nominal ratios (0.07?x?0.625) in order to obtain information about the competitive role of B2O3 and Bi2O3 in the formation of the glass network. The glass samples have been prepared by melting at 1100 °C and rapidly cooling at room temperature. In order to relax the structure, to improve the local order and to develop crystalline phases the glass samples were kept at 575 °C for 10 h. The influence of both Bi2O3 and CuO on the vitreous B2O3 network as well as the local order changes around bismuth and boron atoms in as prepared and heat treated samples was studied. Structural modifications occurring in heat treated samples compared to the untreated glasses have been observed.  相似文献   

17.
《Journal of Non》2006,352(32-35):3414-3422
The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F octahedron and to Cu2+ on interstitial sites with a square-planar F co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g  2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin–lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin–lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc.  相似文献   

18.
The thermodynamics of the redox equilibrium of Cu+/Cu2+ were determined by square-wave voltammetry in glass melts with the base mol% compositions x Na2O · (100 − x) SiO2 (x = 15, 20, 26 and 33) and (26 − x) Na2O · x CaO · 74 SiO2 (x = 0, 5, 10 and 15) doped with 1 mol% CuO in the temperature range from 850 to 1150 °C. All recorded voltammograms showed two maxima attributed to the reductions of Cu2+ to Cu+ and Cu+ to metallic copper. Both peaks are shifted to smaller potentials with decreasing temperature. With increasing melt basicity, the [Cu+]/[Cu2+]-ratio first increases, and remains constant for optical basicities >0.56. The effect of composition on the redox equilibrium is explained by the incorporation of both Cu+ and Cu2+ in octahedral coordination into the melt structure.  相似文献   

19.
S. Rada  A. Dehelean  E. Culea 《Journal of Non》2011,357(16-17):3070-3073
Glasses in the xEu2O3·(100-x)[4TeO2·PbO2] system where 0  x  50 mol% have been prepared using the melt quenching method. The influence of europium ions on the structure of lead–tellurate glasses has been investigated using density measurements, FTIR and UV–VIS spectroscopy. Structural changes produced by increasing the rare earth concentration were followed.The europium and lead ions show a preference towards [TeO3] structural units causing a deformation of the TeOTe linkages. Structural changes inferred by analyzing the band shapes of IR spectra revealed that the increase of the Eu+ 3 content causes the intercalation of [EuOn] entities in the [TeO4] chain network. The excess of oxygen can be supported into the glass network by the formation of [PbOn] and [EuOn] structural units.The UV–VIS spectroscopy data show that europium ions enter the glass matrix in the Eu2+ and Eu3+ valence states, the last being predominant in the studied glasses. The Pb+ 2 ions produce strong absorption in the ultraviolet domain.  相似文献   

20.
Glasses based on (85 − x)TeO2-xZnF2-12PbO-3Nb2O5 (x = 0-40) system have been studied for the first time for fabricating mid-infrared optical fiber lasers. The thermal and optical properties including UV-Vis, Raman as well as FTIR spectra are reported. It is demonstrated that increasing the ZnF2 concentration to 30 mol% significantly increased the thermal stability of the glass. Adding ZnF2 also reduced the hydroxyl (OH) content of the glass resulting in lower optical absorption in the mid-infrared region, which is crucial for infrared laser applications. The glass absorption cut-off edge near 400 nm blue-shifts with increasing ZnF2 addition. Raman spectra show a depolymerization of the glass network with increasing transformation of TeO3+1 to TeO3 structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号