首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rare-earth dicyanamides Ln[N(CN)2]3 (Ln=La, Ce, Pr, Nd, Sm, Eu) were obtained via ion exchange in aqueous medium and subsequent drying: The crystal structures were solved and refined based on X-ray powder diffraction data and they were found to be isotypic: Ln[N(CN)2]3; Cmcm (no. 63), Z=4, Ln=La: , , ; Ce: , , ; Pr: , , ; Nd: , , ; Sm: , , ; Eu: , , ). The compounds represent the first dicyanamides with trivalent cations. The Ln3+ ions are coordinated by three bridging N atoms and six terminal N atoms of the dicyanamide ions forming a three capped trigonal prism. The structure type is related to that of PuBr3. The novel compounds Ln[N(CN)2]3 have been characterized by IR and Raman spectroscopy (Ln=La) and the thermal behavior has been monitored by differential scanning calorimetry (Ln=Ce, Nd, Eu).  相似文献   

2.
The compound CsAgSb4S7 has been synthesized by the reaction of the elements in a Cs2S3 flux at 773 K. The compound crystallizes in a new structure type with eight formula units in space group C2/c of the monoclinic system in a cell at 153 K of dimensions , , , β=97.650(1)°, and . The structure contains two-dimensional layers separated by Cs atoms. Each layer is built from edge-sharing one-dimensional and chains. Each Ag atom is tetrahedrally coordinated to four S atoms. Each Sb3+ center is pyramidally coordinated to three S atoms to form an SbS3 group. CsAgSb4S7 is insulating with an optical band gap of 2.04 eV. Extended Hückel calculations indicate that the band gap in CsAgSb4S7 is dominated by the Sb 5s and S 3p states above and below the Fermi level.  相似文献   

3.
The two compounds RbInS2 and RbInSe2 have been synthesized at 773 K by means of the reactive flux method. These isostructural compounds crystallize in space group C2/c of the monoclinic system with 16 formula units in a cell at 153 K of dimensions , , , and β=100.244(1)° for RbInS2, and , , , and β=100.16(2)° for RbInSe2. The In atoms are four-coordinated. The structure consists of two-dimensional (Q=S, Se) layers perpendicular to [001] separated from the Rb+ cations. Adamantane-like In4Q10 units are connected by common corners to form the layers. Band structure calculations indicate that these compounds are direct band-gap semiconductors with the smallest band gap at the Γ point. The calculated band gaps are 2.8 eV for RbInS2 and 2.0 eV for RbInSe2, values that are consistent with the colors of the compounds.  相似文献   

4.
The study of curium iodate, Cm(IO3)3, was undertaken as part of a systematic investigation of the 4f- and 5f-elements’ iodates. The reaction of 248CmCl3 with aqueous H5IO6 under mild hydrothermal conditions results in the reduction of IO65− to IO3 anions, and the subsequent formation of Cm(IO3)3 single crystals. Crystallographic data are: (193 K, MoKα, ): monoclinic, space group P21/c, , , , β=100.142(2)°, V=811.76(14), Z=4, R(F)=2.11%, for 119 parameters with 1917 reflections with I>2σ(I). The structure consists of Cm3+ cations bound by iodate anions to form [Cm(IO3)8] units, where the local coordination environment around the curium centers can be described as a distorted dodecahedron. There are three crystallographically unique iodate anions within the structure; two iodates bridge between three Cm centers, and one iodate bridges between two Cm centers and has a terminal oxygen atom. The bridging of the curium centers by the iodate anions creates a three-dimensional structure. Three strong Raman bands with comparable intensities were observed at 846, 804, and 760 cm−1 and correspond to the I-O symmetric stretching of the three crystallographically distinct iodate ions. The Raman profile suggests a lack of inter-ionic vibrational coupling of the I-O stretching, while intra-ionic coupling provides symmetric and asymmetric components that correspond to each iodate site. Repeated collection of X-ray diffraction data for a crystal of Cm(IO3)3 over a period of time revealed a gradual expansion of the unit cell from self-irradiation. After 71 days, the new parameters were: , , , β=100.021(2)°, V=818.3(2).  相似文献   

5.
The single crystals of lanthanum metaphosphate MLa(PO3)4 (M=Na, Ag) have been synthesized and studied by a combination of X-ray crystal diffraction and vibrational spectroscopy. The sodium and silver compounds crystallize in the same monoclinic P21/n space group ( factor group) with the following respective unit cell dimensions: a=7.255(2), b=13.186(3), , β=90.40(2)°, , Z=4 and a=7.300(5), b=13.211(9), , β=90.47(4)°, , Z=4. This three-dimensional framework is built of twisted zig-zag chains running along a direction and made up of PO4 tetrahedra sharing two corners, connected to the LaO8 and NaO7 or AgO7 polyhedra by common oxygen atoms to the chains. The infrared and Raman vibrational spectra have been investigated. A group factor analysis leads to the determination of internal modes of (PO3) anion in the phosphate chain.  相似文献   

6.
Two alkali metal uranates Rb2U2O7 and Rb8U9O31 have been synthesized by solid state reaction at high temperature and their crystal structures determined from single crystal X-ray diffraction data, collected with a three circles Brucker SMART diffractometer equipped by Mo(Kα) radiation and a charge-coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least-square method on the basis of F2 for all unique reflections, with R1=0.043 for 53 parameters and 746 independent reflections with I?2σ(I) for Rb2U2O7, monoclinic symmetry, space group P21/c, , , , β=108.81(1)°, , , Z=2 and R1=0.036 for 141 parameters and 2065 independent reflections with I?2σ(I) for Rb8U9O31, orthorhombic, space group Pbna, , , , , , Z=4.The Rb2U2O7 structure presents a strong analogy with that of K2U2O7 and can be described by layers of distorted UO2(O4) octahedra built from dimeric units of edge shared octahedra further linked together by opposite corners. In Rb8U9O31 puckered layers are formed by the association of two different uranium polyhedra, pentagonal bipyramids and distorted octahedra. The structure of Rb8U9O31 is built from a regular succession of infinite ribbons similar to those observed in diuranates M2U2O7 (MK, Rb) and infinite three polyhedra wide ribbons , to create an original undulated sheets .For both compounds Rb+ ions occupy the interlayer space and exhibit comparable mobility with conductivity measurements indicating an Arrhenius-type behavior.  相似文献   

7.
A new layered zirconium diphosphonate fluoride, ZrF(O3PCH2)2NHCH2C6H5 has been prepared and its structure determined ab initio by X-ray powder data and refined with the Rietveld method (orthorhombic, , , , space group Pbca, , Z=8, Rwp=0.080). Both phosphonic groups of each diphosphonate building block are bonded to zirconium atoms on the same side of each layer. Benzyl groups from adjacent layers are interdigitated in the interlayer region, with probable π-π stacking interactions. The structure of the free benzylamino-N,N-bis methylphosphonic acid has been determined by single crystal X-ray data (monoclinic, space group P21, , , , β=92.930(3)°, , Z=2, R1=0.072, wR2=0.150). As in the zirconium derivative, benzyl groups from adjacent layers are interdigitated and create a regular alternation of polar and non-polar regions.  相似文献   

8.
9.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

10.
Crystal structures and magnetic properties of quaternary oxides Ba3MIr2O9 (M=Mg, Ca, Sc, Ti, Zn, Sr, Zr, Cd and In) were investigated. Rietveld analyses of their X-ray diffraction data indicate that they adopt the 6H-perovskite-type structure with space group P63/mmc or, in the case of M=Ca, Sr and Cd, a monoclinically distorted structure with space group C2/c. The Ir valence configurations are (M=Mg, Ca, Zn, Sr and Cd), (M=Sc and In) and (M=Ti and Zr). Magnetic susceptibility and specific heat measurements were carried out. In the , the Ir5+ ions have a non-magnetic ground state and the magnetic behavior for these compounds is explained by the Kotani's theory. For , the effective magnetic moment of these compounds is significantly small, although the Ir4+ ions have magnetic moment, which indicates the existence of the strong antiferromagnetic interaction between Ir4+ ions in the Ir4+2O9 face-shared bioctahedra. In the case of , a specific heat anomaly was found at about 10 K (M=Sc) and 1.6 K (M=In), which suggests the magnetic ordering of the magnetic moments of Ir4+ in the (Ir4+Ir5+)O9 bioctahedra.  相似文献   

11.
Single crystals of three new open-framework lanthanide oxalates have been synthesized hydrothermally, in the presence of 1,2-diaminopropane, (C3N2H12)[Nd(H2O)(C2O4)2]2·3H2O I and (C3N2H12)[Yb(C2O4)2]2·5H2O II, or 1,3-diaminopropane (C3N2H12)2[La2(C2O4)5]·5H2O III. Their structures have been determined by X-ray diffraction data: I and III crystallize in the triclinic system, space group P-1, with , , , α=93.092(5)°, β=93.930(6)°, γ=108.359(5)° and , , , α=104.585(4)°, β=108.268(5)°, γ=111.132(5)°, respectively while II crystallizes in the orthorhombic system, space group F2dd, with , , . The three-dimensional (3D) framework of these compounds is built up by the linkages of lanthanide atoms and the oxygen atoms of the bischelating oxalate ligands. Instead of four chelating oxalate units surrounding a lanthanide atom (I and II), both lanthanum atoms, in III, are surrounded by five chelating oxalate groups and that is new. In all the cases within the frame, are observed 8- and 12-membered channels where are localized the guest species, 1,2- or 1,3-diaminopropane cations and free water molecules. The ratio of the guest number (especially the diaminopropane) per 12-membered ring could tune the shape and the size of 12-membered channels: thus, the 12-membered channels, observed for I and II, have elliptical cross-section (5.5 Å×11.4 Å and 5.2 Å×9.5 Å) while those, observed for III, have nearly circular cross-section (9.1 Å×9.5 Å). The lanthanide atoms are 8, 9 and 10-fold coordinated for Yb (II), Nd (I) and La (III), respectively.  相似文献   

12.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

13.
The ternary rare-earth cadmium antimonides RECd1−xSb2 (RE=La, Ce, Pr, Nd, Sm) were prepared by reaction of the elements at 1000 °C. The presence of Cd defects, previously found for LaCd0.700(5)Sb2 and CeCd0.660(4)Sb2, has been confirmed by single-crystal X-ray diffraction studies for the isotypic compounds PrCd0.665(3)Sb2, ), NdCd0.659(3)Sb2, ), and SmCd0.648(3)Sb2, ). These compounds adopt the HfCuSi2-type structure (Pearson symbol tP8, space group P4/nmm, Z=2). The electrical and magnetic properties of samples with nominal composition RECd0.7Sb2 were investigated. All exhibit metallic behaviour, but CeCd0.7Sb2 undergoes an abrupt drop in its electrical resistivity below 3 K. LaCd0.7Sb2 exhibits temperature-independent Pauli paramagnetism and SmCd0.7Sb2 displays van Vleck paramagnetism. The remaining compounds obey the modified Curie-Weiss law at high temperatures. CeCd0.7Sb2 undergoes ferromagnetic ordering below 3 K, reaching a saturation magnetization of ∼1.0 μB, whereas PrCd0.7Sb2 and NdCd0.7Sb2 remain paramagnetic down to 2 K.  相似文献   

14.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

15.
Two isotypes of a new layered aluminophosphate, further denoted MDAP-3 and MDAE-1, have been synthesized under hydrothermal conditions using N-methyl-1,3-propanediamine and N-methyl-ethylenediamine, respectively. MDAP-3, with the empirical formula [Al2(HPO4)(PO4)2](C4N2H14)(H2O), crystallizes in the orthorhombic space group Pna2(1) (No. 33) with , , , Z=4, R1=0.0498 and wR2=0.1217. The second solid, MDAE-1, with the empirical formula [Al2(HPO4)(PO4)2](C3N2H12)(H2O), crystallizes in the same space group with , , , Z=4, R1=0.0407 and wR2=0.0954. The two compounds possess the same layer topology. Inorganic layers contain PO3=O, PO3OH, AlO4 and AlO6 polyhedra, linked together to generate a new 4×8 net. MDAP-3 and MDAE-1 represent the first examples of two-dimensional layered aluminophosphates with the Al2P3O12 stoichiometry, and containing AlO6 octahedra.  相似文献   

16.
Rare-earth orthoferrites, RFeO3, and rare-earth iron garnets (RIGs) R3Fe5O12 (R=rare-earth elements) were prepared by citrate-nitrate gel combustion method and characterized by X-ray diffraction method. Isobaric molar heat capacities of these oxides were determined by using differential scanning calorimetry from 130 to 860 K. Order-disorder transition temperatures were determined from the heat capacity measurements. The Néel temperatures (TN) due to antiferromagentic to paramagnetic transitions in orthoferrites and the Curie temperatures (TC) due to ferrimagnetic to paramagnetic transitions in garnets were determined from the heat capacity data. Both TN and TC systematically decrease with increasing atomic number of R across the series. Lattice, electronic and magnetic contributions to the total heat capacity were calculated. Debye temperatures as a function of absolute temperature were calculated for these compounds. Thermodynamic functions like , , Ho, Go, , , , , and have been generated for the compounds RFeO3(s) and R3Fe5O12(s) based on the experimental data obtained in this study and the available data in the literature.  相似文献   

17.
18.
A new compound, CePdGa6, and its isostructural analog, LaPdGa6 have been synthesized by flux growth and characterized by single-crystal X-ray diffraction. The compounds adopt a tetragonal structure with P4/mmm space group, Z=1. The lattice parameters for CePdGa6 are and and and for LaPdGa6. Magnetic and thermal measurement have revealed that CePdGa6 is a heavy-fermion with the specific heat coefficient and Ce f moments order antiferromagnetically along c-axis at . Reconfiguration of spin occurs at to induce a ferromagnetic component only in the a-b plane. This strong anisotropy in the magnetism might be related to its unique layered structure.  相似文献   

19.
In this paper, treatment of N-ethyl-benzo[f]quinolium (ebq) iodide and CuI with excess KI afforded an unusual coordination polymer [(ebq)2(Cu3I4)(CuI2)]n (1). 1 crystallizes in tetragonal system, space group P4(2)bc with cell parameters of , , , Z=8, , R1=0.0447 and wR2=0.0974. A highly interesting feature of 1 is its presence of mixed types of chains [ and chain] in one crystal lattice based on supramolecular self-assembly directed by cations. The infinite chains and in 1 could be described as the edge-sharing arrangement of CuI4 tetrahedron. Furthermore, IR, EA, UV-Vis, thermal analysis and optical limiting measurements were adopted to characterize polymer 1. The optical limiting experiment shows that the present polymer exhibits a large optical limiting capacity.  相似文献   

20.
RbVSe2 has been synthesized at 773 K through the reaction of V and Se with a Rb2Se3 reactive flux. The compound crystallizes in the orthorhombic space group D2h24-Fddd with 16 formula units in a cell of dimensions , , and at . The structure possesses infinite one-dimensional chains of edge-sharing VSe4 tetrahedra separated from the Rb+ ions. These chains distort slightly to chains. The V-V distance within these chains is 2.8362(4) Å. First-principles total energy calculations indicate that a non-magnetic configuration for the V3+ cations is the most stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号