首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first AlkNSNHetF sulfur diimide 6 (Alk=adamant-1-yl, HetF=2,3,5,6-tetrafluoropyrid-4-yl) was prepared by trapping of the corresponding alkylthiazylamide [AlkNSN]3 with pentafluoropyridine, followed by X-ray structural characterization. For 6, the Z,E configuration was found. From the reaction of 3 with octafluoronaphthalene, hexafluorinated naphthothiadiazole 7 was isolated along with the parent AlkNH2.  相似文献   

2.
Tungsten(0) carbene complexes of the type (OC)5WC(NMeCH2CHCHCH2OH)R 2 (R=Me: 2a; R=Ph: 2b) were generated by aminolysis of (OC)5WC(OMe)R with cis-NHMeCH2CHCHCH2OH. Like their Cr-congeners 1, complexes 2 exist at room temperature as mixtures of Z- and E-isomers with regard to the C-N bond. The metallacyclic complexes (OC)4WC(η2-NMeCH2CHCHCH2OH)R (4) were obtained in good yields upon photo-decarbonylation of 2. Deprotonation/silylation of the complexes (OC)4MC(η2-NMeCH2CHCHCH2OH)Me (M=Cr: 3a; M=W: 4a) with one equivalent of nBuLi/Me3SiCl gave (OC)4MC(η2-NMeCH2CHCHCH2OSiMe3)CH3 (M=Cr: 5; M=W: 6), whereas with two equivalents of nBuLi/Me3SiCl complexes (OC)4MC(η2-NMeCH2CHCHCH2OSiMe3)CH2SiMe3 (M=Cr: 7; M=W: 8) were formed. Hydrolysis of the latter yielded selectively (OC)4MC(η2-NMeCH2CHCHCH2OH)CH2SiMe3 (M=Cr: 9; M=W: 10). The complexes 1-10 were analyzed in solution by one- and two-dimensional NMR spectroscopy (1H, 13C, 29Si, 1H/1H COSY, 1H/1H NOESY, 13C/1H HETCOR).  相似文献   

3.
Further investigations into the chemistry of the rhenacyclobutadiene complexes (CO)4Re(η2-C(R)C(CO2Me)C(X)) (1: R=Me, X=OEt (1a), O(CH2)3CCH (1b), NEt2 (1c); R=CHEt2, X=OEt (1d); R=Ph, X=OEt (1e)) are reported. Reactions of 1 with alkynes at reflux temperature of toluene and at ambient temperature either under photochemical conditions or in the presence of PdO yield ring-substituted η5-cyclopentadienylrhenium tricarbonyl complexes, 2. The symmetrical alkynes RCCR (R=Ph, Me, CO2Me) afford the pentasubstituted complexes (η5-C5(Me)(CO2Me)(OEt)(Ph)(Ph))Re(CO)3 (2d), (η5-C5(Me)(CO2Me)(OEt)(Me)(Me))Re(CO)3 (2e), (η5-C5(Me)(CO2Me)(OEt)(CO2Me)(CO2Me))Re(CO)3 (2f), and (η5-C5(Me)(CO2Me)(NEt2)(CO2Me)(CO2Me))Re(CO)3 (2i) on reaction with the appropriate 1, whereas the unsymmetrical alkynes RCCR″ (R=Ph; R″=H, Me) give either only one, (η5-C5(Me)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2a)), or both, (η5-C5(Me)(CO2Me) (OEt)(Ph)(Me))Re(CO)3 (2b) and (η5-C5(Me)(CO2Me)(OEt)(Me)(Ph))Re(CO)3 (2c), (η5-C5(Ph)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2g) and (η5-C5(Ph)(CO2Me)(OEt)(H)(Ph))Re(CO)3 (2h), of the possible products of [3 + 2] cycloaddition of alkyne to η2-C(R)C(CO2Me)C(X). Thermolysis of (CO)4Re(η2-C(Me)C(CO2Me)C(O(CH2)3CCH)) (1b) containing a pendant alkynyl group proceeds to (η5-C5(Me)(CO2Me)(O(CH2)3)H)Re(CO)3 (2j), a η5-cyclopentadienyl-dihydropyran fused-ring product. Competition experiments showed that each of PhCCH and MeO2CCCCO2Me reacts faster than PhCCPh with 1a. The results with unsymmetrical alkynes are rationalized by steric properties of substituents at the CC and ReC bonds and by a preference of ReC(Me) over ReC(OEt) to undergo alkyne insertion. A mechanism is proposed that involves substitution of a trans CO by alkyne in 1, insertion of alkyne into ReC bond to give a rhenabenzene intermediate, and collapse of the latter to 2. Complexes 1a and 1d undergo rearrangement in MeCN at reflux temperature to give rhenafuran-like products, (CO)4Re(κ2-OC(OMe)C(CHCR2)C(OEt)) (R=H (3a) or Et (3b)). The reaction of 1d also proceeds in EtCN, PhCN, and t-BuCN at comparable temperature, but is slower (especially in t-BuCN) than in MeCN. In pyridine at reflux temperature, 1a undergoes a similar rearrangement, with CO substitution, to give (CO)3(py)Re(κ2-OC(OMe)C(CHCEt2)C(OEt)) (4). A mechanism is proposed for these reactions. The sulfonium ylides Me2SCHC(O)Ph and Me2SC(CN)2 (Me2SCRR) react with 1a in acetonitrile at reflux temperature by nucleophilic addition of the ylide to the ReC(Me) carbon, loss of Me2S, and rearrangement to a rhenafuran-type structure to yield (CO)4Re(κ2-OC(OMe)C(C(Me)CRR)C(OEt)) (R=H, R=C(O)Ph (5a); R=RCN (5b)). All new compounds were characterized by a combination of elemental analysis, mass spectrometry, and IR and NMR spectroscopy.  相似文献   

4.
Ketenylidenetriphenylphosphorane, Ph3PCCO (2), reacts selectively with the ω-hydroxy group of the alkene-carbene complexes (OC)4CrC(η2-NMeCH2CHCHCH2OH)R1 (1) (R1=Me: (1a); Ph: (1b)) to give the acyl ylide terminated complexes (OC)4CrC[(4,5-η2)-NMeCH2CHCHCH2O(O)C-CHPPh3]R1 (3) (R1=Me: (3a); Ph: (3b)). Complexes 3 undergo Wittig alkenation reactions with aldehydes such as 2-alkynals, R2-CC-CHO (R2=H, SiMe3, Ph), to give the corresponding 4Z, 9E-dien-11-ynes (OC)4CrC[(4,5-η2)-NMeCH2CHCHCH2O(O)C-CHCH-CC-R2]R1 (4-6) (R1=Me, R2=H, SiMe3, Ph: (4a-6a); R1=Ph, R2=H, SiMe3, Ph: (4b-6b)). All complexes were characterized in solution by one- and two-dimensional NMR spectroscopy (1H, 13C, 29Si, 31P, 1H/1H COSY, 13C/1H HETCOR, 31P/31P EXSY).  相似文献   

5.
Three diruthenium(III) compounds Ru2(L)4Cl2, where L is mMeODMBA (N,N′-dimethyl-3-methoxybenzamidinate, 1a), DiMeODMBA (N,N′-dimethyl-3,5-dimethoxy benzamidinate, 1b), or DEBA (N,N′-diethylbenzamidinate, 1c), were prepared from the reactions between Ru2(OAc)4Cl and respective HL under reflux conditions. Metathesis reactions between 1 and LiC2Y resulted in bis-alkynyl derivatives Ru2(L)4(C2Y)2 [Y=Ph (2), SiMe3 (3), SiiPr3 (4) and C2SiMe3 (5)]. The parent compounds 1 are paramagnetic (S=1), while bis-alkynyl derivatives 2-5 are diamagnetic and display well-solved 1H- and 13C-NMR spectra. Molecular structures of compounds 1b, 1c, 2c, 3c and 4b were established through single crystal X-ray diffraction studies, which revealed RuRu bond lengths of ca. 2.32 Å for parent compounds 1 and 2.45 Å for bis-alkynyl derivatives. Cyclic voltammograms of all compounds feature three one-electron couples: an oxidation and two reductions, while the reversibility of observed couples depends on the nature of axial ligands.  相似文献   

6.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

7.
Three new diorganotin(IV) complexes of the general formula R2Sn[3-(OMe)-2-OC6H3CHN-NC(O)Ph] (R = Ph, Ia; R = Me, Ib; R = n-Bu, Ic) have been synthesised from the corresponding diorganotin(IV) dichlorides and the ligand, N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide in methanol at room temperature in the presence of trimethylamine. All the complexes have been characterized by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed by single crystal X-ray diffraction analysis of one representative compound Ia. Complex Ia crystallises in the orthorhombic system, space group Pna21 with a = 12.424(5), b = 9.911(5), c = 18.872(5) Å; Z = 4. The ligand N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L) coordinates to the metal centre in the enolate form via the phenolic O, imino N and enolic O atoms. In Ia, the central tin atom adopts a distorted trigonal bipyramidal coordination geometry with the oxygen atoms in axial positions, while the imino nitrogen atom of the Schiff base and the two phenyl groups occupy the equatorial sites. The δ(119Sn) values for the complexes Ia, Ib and Ic are −327.3, −151.7 and −187.2 ppm, respectively, thus indicating penta-coordinated Sn centres in solution.  相似文献   

8.
Palladium complexes of N-phenyl-2-pyridylamine (4) and dipyridylamine substrates (7, 11) have been studied. Due to the coordination ability of the pyridine-nitrogen atoms, the pyridyl substrates, 4, 7, 11 were subjected to Pd(OAc)2 complexations and a number of N-aryl-2-pyridylamine Pd complexes (13-17) were isolated and characterised, in particular by NMR and ESI-MS. A new method for the preparation of the acetato-bridged six-membered ring palladacycle complex (13) of 4 is reported. The dipyridyl amines 7, 11 formed cis/trans bis-dentate acetato-bridged dimeric Pd2Lig2(OAc)2 (14a,b/16a,b) and Pd3Lig2(OAc)4 complexes (15a,b/17a,b). The N-aryl-2-pyridylamine substrates (4, 7, 11) were prepared by oxidative nucleophilic substitution, by 1,3-cycloaddition reaction or by Buchwald amination.  相似文献   

9.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

10.
Displacement of tetrahydrofuran in [(CO)5M(THF)] (M=Cr, W) by the anion [CCC(X)Y] (X=O; NR; Y=NR′2, Ph) followed by alkylation of the resulting metalate with [R″3O]BF4 (R″=Me, Et) offers a convenient and versatile route to π-donor-substituted allenylidene complexes, [(CO)5MCCC(XR″)Y]. Allenylidene complexes in which the terminal carbon atom of the allenylidene ligand constitutes part of a heterocycle are likewise accessible by this reaction sequence. Reaction of [(CO)5M(THF)] with Li[CCC(NMe)Ph] and subsequent protonation of the metalate afford [(CO)5MCCC(NMeH)Ph] in high yield. As indicated by the spectroscopic data of the compounds and the X-ray analyses of three representative examples, these allenylidene complexes are best described as hybrids of allenylidene and zwitterionic alkynyl complexes with delocalisation of the electron pair at nitrogen towards the metal center. Dimethylamine reacts with the amino(phenyl)allenylidene complex [(CO)5CrCCC(NMe2)Ph] (7a) by addition of the amine across the CαCβ bond to give selectively the E-alkenyl(amino)carbene complex [(CO)5CrC(NMe2)CHC(NMe2)Ph] (12). In contrast, the reaction of dimethylamine with the amino(methoxy)allenylidene complex [(CO)5CrCCC(NMe2)OMe] (1a) proceeds by addition of the amine to the Cγ atom and subsequent elimination of methanol to give the substitution product [(CO)5CrCCC(NMe2)2] (13). Triphenylphosphane neither adds to the Cα nor the Cγ atom of 7a but upon irradiation displaces a CO ligand to form a cis-allenylidene(tetracarbonyl)phosphane complex 15.  相似文献   

11.
Diorganotin(IV)-complexes of the N-nitroso-N-phenylhydroxylaminates (hereinafter cupf), Et2Sn(cupf)2 (1), Bu2Sn(cupf)2 (2), {[Bu2Sn(cupf)]2O}2 (3), t-Bu2Sn(cupf)2 (4) and Oc2Sn(cupf)2 (5, 6) were prepared and characterised by FT-IR and Mössbauer spectroscopic measurements. The binding modes of the ligand were identified by FT-IR spectroscopy, and it was found that the ligand is coordinated in chelating or bridging mode to the organotin(IV) center. The 119Sn Mössbauer and FT-IR studies support the formation of trans-Oh (1-6) structures. The X-ray diffraction analysis of 4 revealed that the tin centre is in a skew-trapezoidal geometry defined by four donors derived from the cupferronato ligands and two carbon atoms from the tin-bound tbutyl substituents. The 119Sn NMR investigations indicate that in solution 4 retains its hexacoordinated nature.  相似文献   

12.
Various vinylsilanes, SiX(CHCH2)(CH3)[2-(CH3)2NCH2C6H4], and ethylsilanes, SiX(CH2CH3)(CH3)[2-(CH3)2NCH2C6H4] [X=Cl (1); OMe (2); H (3); F (4); OSiMe3 (5); NMe2 (6); Me (7)], were synthesized in order to investigate the electronic effect of vinyl group on silicon atom having an intramolecular coordination arm. The magnitude of Δδ (ethyl→vinyl for 29Si-NMR) of chlorosilane, 1, was the biggest one among 1-7. The differences of 29Si chemical shifts between vinylsilanes and ethylsilanes increased in the following order: X=Me, NMe2<H<OSiMe3<OMe<F<Cl.  相似文献   

13.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

14.
The reaction of N-(N′-methyl-2-pyrrolylmethylidene)-2-thienylmethylamine (1) with Fe2(CO)9 in refluxing toluene gives endo cyclometallated iron carbonyl complexes 2 and 5, exo cyclometallated iron carbonyl complex 3, and unexpected iron carbonyl complex 4. Complexes 2, 3, and 5 are geometric isomers. Complex 5 differs from complex 2 in the switch of the original substituent from α to β position of the pyrrolyl ring, and the pyrrolyl ring bridges to the diiron centers in μ-(3,2-η12) coordination mode in stead of μ-(2,3-η12). In complex 4, the pyrrolyl moiety of the original ligand 1 has been displaced by a thienyl group, which comes from the same ligand. Single crystals of 2, 3, and 5 were subjected to the X-ray diffraction analysis. The major product 2 undergoes: (i) thermolysis to recover the original ligand 1; (ii) reduction to form a hydrogenation product, 6, of the original ligand; (iii) substitution to form a monophosphine-substituted complex 7; (iv) chemical as well as electrochemical oxidation to produce a carbonylation product, γ-butyrolactam 8.  相似文献   

15.
The reaction of P4S10 (1) with N,N′-diphenylurea (PhNH)2CO (2) results in new heterocyclic compounds: the pyridinium salt of 1,3-diphenyl-2-sulfido-2-thioxo-1,3-diaza-2λ5-phosphetidine (3) (with a P–N–C–N cycle) and the pyridinium salt of 1,4-diphenyl-2,5-disulfido-2,5-dithioxo-1,4-dithiadiaza-2λ5,5λ5-diphosphinane (4), containing the (P–S–N)2 cycle and the cyclic thiophosphates [pyH]2[P2S8] (5), [pyH]2[P2S7] (6) and [pyH]3[P3S9] (7). A similar reaction, but carried out with N,N′-diphenylthiourea (PhNH)2CS (8), leads to the formation of 4 and 6. pyPS2Cl (9), used as an alternative starting material, also yields compounds 3, 4, 5, and further [pyH][PS2Cl2] (10) and S8 after reaction with 2. Compound 3 reacts with Pd(CH3COO)2, with the formation of the complex [Pd(Ph2N2COPS2)2] (11). The crystal structures of 3 and 7 were determined by single-crystal X-ray diffraction.  相似文献   

16.
Five substituted cyclopentadienyl titanium trimethoxide complexes, RCpTi(OMe)3 (R=Me (2b), iPr (2c), Me3Si (2d), allyl (2e), PhCH2 (2f)), were prepared. By reacting RCpTi(OMe)3 with BF3OMe2, six RCpTiF2(OMe) (R=H (3a), Me (3b), iPr (3c), Me3Si (3d), allyl (3e), PhCH2 (3f)) were obtained. When activated with methylaluminoxane (MAO), the activities of RCpTiF2(OMe) system were less than those of RCpTi(OMe)3 system in solution polymerization of styrene, but the polymers made by RCpTiF2(OMe) exhibited higher Mw and melting point than those by RCpTi(OMe)3. Both systems produced polymers with similar syndiotacticities in the range 92.4-97.6%. Introduction of a substituent group into the Cp-ligand enhanced the melting points of the polymers, and meanwhile decreased the catalytic activities of RCpTi(OMe)3/MAO and RCpTiF2(OMe)/MAO systems, where the order of activity was RCp=Cp > MeCp > iPrCp > Me3SiCp > CH2CHCH2Cp > PhCH2Cp. Complexes 2a (CpTi(OMe)3) and 3a showed the highest activities respectively for both systems, and are three to four times more active than CpTiCl3. In bulk polymerization, the difference of activities between RCpTi(OMe)3/MAO and RCpTiF2(OMe)/MAO systems became small, where complexes 2e and 3e exhibited remarkably higher activities compared with their solution polymerization activities. The maximum polymerization activities were found at the polymerization temperature of 50 °C for most of the complexes. The influence of the polymerization time (tP), polymerization temperature (TP) and Al/Ti ratio on the activities of complexes 2b and 3b were investigated. It was observed that the initial rate of propagation of complex 2b was higher than that of complex 3b and the highest activities of both catalysts were reached at the relatively low Al/Ti ratio of 150 and decrease for larger ratios.  相似文献   

17.
Ring-opening metathesis polymerization (ROMP) of exo-N-(1-adamantyl)-7-oxanorbornene-5,6-dicarboximide (AdONDI) (3a), exo-N-cyclohexyl-7-oxanorbornene-5,6-dicarboximide (ChONDI) (3b) and exo-N-phenyl-7-oxanorbornene-5,6-dicarboximide (PhONDI) (3c) using well-defined alkylidene ruthenium catalysts (PCy3)2(CI)2RuCHPh (I) and (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) (PCy3)CI2RuCHPh (II) was studied. The catalysts I and II gave polymers with around 70% and 50% trans vinylene content, respectively. The homopolymer of 3a had a Tg of 198 °C, while poly-3b showed a Tg of 122 °C. Copolymers of 3a, 3b and 3c with norbornene (NB) showed significant Tg increases over poly-NB.  相似文献   

18.
N-(3-ferrocenyl-2-naphthoyl) dipeptide esters (5-7) and N-(6-ferrocenyl-2-naphthoyl) dipeptide esters (8-10) were prepared by coupling either 3-ferrocenylnaphthalene-2-carboxylic acid 2 or 6-ferrocenylnaphthalene-2-carboxylic acid 4 to the dipeptide ethyl esters GlyAla(OEt) (5, 8), AlaGly(OEt) (6, 9), and AlaAla(OEt) (7, 10) using the standard N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), 1-hydroxybenzotriazole (HOBt) protocol. All the compounds were fully characterized using a combination of 1H NMR, 13C NMR, DEPT-135 and 1H-13C COSY (HMQC) spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and cyclic voltammetry (CV). In vitro, the cytotoxic effects of compounds 5-10 show improvements over the corresponding N-(ferrocenyl)benzoyl derivatives, with IC50 values against the H1299 lung cancer cells ranging from 1.2 μM to 8.0 μM. N-(6-ferrocenyl-2-naphthoyl)-glycine-l-alanine ethyl ester 8 was found to be the most active derivative of the naphthoyl series so far, displaying an IC50 value of 1.3 ± 0.1 μM. This value is slightly lower than that found for the clinically employed anti-cancer drug cisplatin (IC50 = 1.5 ± 0.1 μM against H1299).  相似文献   

19.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

20.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号