首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

2.
Complete demethylation of Cp2Ti(CH3)2 in dichloromethane with 2 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7), and [η5-(C5H4COOH)]W(CO)3CH3 (8); gives Cp2Ti{[OC(O)C5H4]Cr(CO)2NO}2 (13), Cp2Ti{[OC(O)C5H4]Cr(NO)2Cl}2 (14), Cp2Ti{[OC(O)C5H4]Cr(NO)2I}2 (15),and Cp2Ti{[OC(O)C5H4]W(CO)3CH3}2 (16), respectively. The chemical shifts of C(2)-C(5) carbon atoms of compounds 13-15 have been assigned using two-dimensional HetCOR NMR spectroscopy. The assigned chemical shifts were compared with the NMR data of their analogues of ferrocene, and the opposite correlation on the assignments was observed for cynichrodenoyl moieties.  相似文献   

3.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   

4.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

5.
The title compound (1) was prepared by the reaction of 3,5-bis(CF3)C6H3P(i-C3H7)2 (L1) and Co2(CO)8. Its solubility in supercritical carbon dioxide was measured at varying temperatures and pressures using a modified analytical extraction device. Solubility data were determined in the temperature and pressure ranges between 40 and 70 °C and between 100 and 300 bar, respectively. The solubility of 1 is lower compared to (p-CF3C6H4)3P, but much higher than for transition metal complexes bearing phosphines without fluorinated substituents.  相似文献   

6.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

7.
Treatment of the hydrosulfido tungsten complex CpW(CO)3SH with acid chlorides (RCOCl) or sulfonyl chlorides (RSO2Cl) affords CpW(CO)3SCOR (1) [R = Me (a), CH2Cl (b), Ph (c), 4-C6H4NO2 (d)] and CpW(CO)3SSO2R (2) [R = Me (a), Ph (b), 4-C6H4Cl (c), 4-C6H4NO2 (d)], respectively. The novel complexes, 1 and 2, were fully characterized by elemental analyses, IR and 1H NMR spectroscopy. The solid state structures of CpW(CO)3SCOPh (1c) and CpW(CO)3SSO2-4-C6H4Cl (2c) were determined by an X-ray crystal structure analysis.  相似文献   

8.
Irradiation of CpRu(CO)2CH3 (1) in C6D6 at room temperature yields CpRu(CO)2C6D5 and CH3D (where Cp = n5-C5Me5). CpRu(CO)2CD3 (2) has also been prepared and similar irradiation in C6H6 yields CpRu(CO)2C6H5 (3) and CD3H. This latter reaction confirms that it is the methyl group bonded to ruthenium that is involved in the C-H activation process and not the methyl groups on the Cp ligand system. The compound CpRu(CO)2C6H5 (3) has been prepared for the first time in good yield by the reaction of CpRu(CO)2Br with NaBPh4. X-ray crystal structures of both CpRu(CO)2CH3 (1) and CpRu(CO)2C6H5 (3) have been determined and the results are reported and discussed.  相似文献   

9.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

10.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

11.
Mono-demethylation of Cp2Ti(CH3)2 in dichloromethane with 1 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7) and [η5-(C5H4COOH)]W(CO)3CH3 (8) gives Cp2Ti(CH3){[OC(O)C5H4]Cr(CO)2NO} (9), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2Cl} (10), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2I} (11) and Cp2Ti(CH3){[OC(O)C5H4]W(CO)3CH3} (12), respectively. The structure of 10 has been solved by X-ray diffraction studies. One of the nitrosyl groups is located at the site away from the exocyclic carbonyl carbon of the Cp(Cr) ring with twist angle of 178.1°. All the data reveals that Cp2Ti(CH3)- is a strong electron-donating group. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) in compounds 5-12, using HetCOR NMR spectroscopy, as compared with the NMR data of their ferrocene analogues. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and those of 10 are compared with the calculations via density functional B3LYP correlation- exchange method.  相似文献   

12.
The reaction of a molar excess of closo-[B12H11I][N(n-C4H9)4]2 (1) with tetrakis(triphenylphosphine)palladium (0), Pd(0)L4, yields to the formation of the title monoanionic compound, closo-[1-B12H11P(C6H5)3][N(n-C4H9)4] (2). The structure of 2 was determined by X-ray diffraction analysis performed on a single crystal. The mechanism of formation of 2 is also discussed. We suggested a two-step mechanism for the formation of 2 consisting in a oxidative addition of the palladium complex followed by a reductive elimination involving P(C6H5)3 and assisted by Na2CO3. To our knowledge, this is the first example of monosubstitution of B12 with formation of boron-phosphorus bond.  相似文献   

13.
The complexes of the type (ArCH2)2SnO were catalytic-oxygenated by Ag+ and yielded mixed-ligand organotin(IV) complexes (ArCH2)(2-C5H4NCO2)2(ArCOO)tin(IV) (Ar = C6H5 (1), 2-ClC6H4 (2), 2-CNC6H4 (3), 4-ClC6H4 (4), 4-CNC6H4 (5), 2-FC6H4 (6)). The complexes 1-6 are characterized by elemental analyses, IR and NMR (1H, 13C, 119Sn) spectroscopies. Single X-ray crystal structure analysis has been determined, which reveals that the center tin atom of complex 2 is seven-coordinated geometry.  相似文献   

14.
The intramolecularly coordinated heteroleptic stannylene [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2]SnCl serves as synthon for the synthesis of the ferrocenyl-bridged bis(diorganostannylene) [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe (1) which in turn reacts with W(CO)6 and Cr(CO)4(C7H8) to provide the corresponding transition metal complexes [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2Sn{W(CO)5}C5H4]2Fe (2) and [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe · Cr(CO)4 (3), respectively. Reaction of compound 1 with sulphur and atmospheric moisture gave, under partial tin-carbon and oxygen-carbon bond cleavage, a tetranuclear organotin-oxothio cluster 5. All compounds were characterized by 1H, 13C, 31P, and 119Sn NMR, and IR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Compounds 1 and 3 were also investigated by Mössbauer spectroscopy. Cyclovoltametric studies reveal the influence of the organostannyl moieties on the redox-behaviour of compounds 1-3 in comparison with unsubstituted ferrocene.  相似文献   

15.
Addition of ethynylferrocene to nido-1,2-(CpRuH)2B3H7 (1) at ambient temperature leads to nido-1,2-(CpRu)2(1,5-μ-C{Fc}Me)B3H7 (2, 3) and closo-4-Fc-1,2-(CpRuH)2-4,6-C2B2H3 (4). Compounds 2 and 3 represent a pair of geometric isomers, nido-species in which the regiochemistry of the alkyne reduction conforms to the Markovnikoff rule. Compound 4 is an octahedral structure in which the inserted alkyne is on an open face of the closo cluster.  相似文献   

16.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

17.
Reactions between [Fe(η-C5H5)(MeCO)(CO)(L)], L = PPh3 (1), PMe3 (2), PPhMe2 (3), PCy3 (4), CO (5), and B(C6F5)3 give new complexes [Fe(η-C5H5){MeCOB(C6F5)3}(CO)(L)] L = PPh3 (7), PMe3 (8), PPhMe2 (9), PCy3 (10), CO (11), where B(C6F5)3 coordinates selectively to the O-acyl groups. Hydrolysis of 7 gives [Fe(η-C5H5){HOB(C6F5)3}(CO)(PPh3)] (6). The X-ray structures of 6, 8 and 11 have been determined. Calculations, using density functional theory, demonstrate that the charge transfer to the acyl group on Lewis acid coordination is more significant in the σ than the π system. Both effects lead to a lengthening of the acyl C-O bond thus π populations cannot be inferred from the distance changes.  相似文献   

18.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

19.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

20.
Reactions of Os3(CO)12 with 1,8-bis(diphenylphosphino)naphthalene (dppn) are described. Crystallographically characterised complexes isolated from a reaction carried out in refluxing toluene are Os3(μ-H)2{μ-PPh2(nap)PPh(C6H4)}2(CO)6 (1), Os3(μ-H){μ3-PPh2(nap)PPh(C6H4)}(CO)8 (2) and Os2(μ-PPh2){μ-PPh2(nap)}(CO)5 (3) (nap=1,8-C10H6), while at r.t. in the presence of ONMe3, only Os3(CO)11{PPh2(1-C10H7)} (4) was isolated. While 1 and 2 contain ligands formed by metallation of a Ph group of dppn, as found also in complexes obtained from dppn and Ru3(CO)12, ligands in 3 and 4 are formed by cleavage of a P-nap bond, not found in the Ru series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号