首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

2.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

3.
Seven group 14 element(IV) compounds 2-7 have been prepared, derived either (2-5) from the potassium β-diketiminate K(L) [L = {N(Ar)C(Me)}2CH, Ar = C6H3Pri2-2,6] (1) or the known lithium β-dialdiminate Li(L′)] [L′ = {N(Ar)C(H)}2CPh, Ar = C6H3Pri2-2,6]. Treatment of 1 with ButC(O)Cl, Me3SiCl, Ph3SnCl, or Me3SnCl afforded {N(Ar)C(Me)}2C(H)C(O)But (2), [ArNC(Me)C(H)C(Me)N(Ar)SiMe3] (3), [HN(Ar)C(Me)C(H)C(CH2SnPh3)N(Ar)] (4), or (5), respectively. Compounds 4 and 5 are remarkable as they have arisen from a tautomer of 1; crystalline centrosymmetric 5 has a fused tricyclic structure, a central eight-membered ring flanked by two six-membered rings. The compounds [GeCl2(L′)(OGeCl3)] (6) or [SnCl(L′)Me2] (7), the first group 14 metal β-dialdiminates, were obtained from Li(L′) and (GeCl3)2O or Me2SnCl2, respectively. The Sn(II) compound SnCl(L′) (8) was prepared from SnCl2 and K(L′). The molecular structures of the crystalline compounds 3-8 are reported.  相似文献   

4.
The metal β-diketiminato ligand-to-metal binding modes are briefly reviewed, with reference particularly to our previous work on metal complexes using the ligands [{N(R1)C(R2)}2CH] (R1 = SiMe3 = R and R2 = Ph; or R1 = C6H3Pri2-2,6 and R2 = Me). The syntheses of the β-diketimines H[{N(R)C(Ar)}2CH] 1 (Ar = Ph) and 2 (Ar = C6H4Me-4) and the ansa-CH2-bridged bis(β-diketimine)s 3 (Ar = Ph) and 4 (Ar = C6H4Me-4) are reported. Thus, from the appropriate compound Li[{N(R)C(Ar)}2CH] and H2O, (CH2Br)2 or CH2Br2 the product was 2, 3 or 4. Compound 1 was prepared from K[{N(R)C(Ph)}2CH] and (CH2Br)2. Each of 3 or 4 with LiBun surprisingly yielded the bicyclic dilithium compound 5 (Ar = Ph) or 6 (Ar = C6H4Me-4) in which each of the β-diketiminato fragments is an N,N′-bridge between the two lithium atoms and the CH2 moiety joins the two ligands through their central carbon atoms. However, 4 with AlMe3 yielded the expected ansa-CH2-bridged-bis[(β-diketiminato)(dimethyl)alane] 7, which was also obtained from 6 and Al(Cl)Me2. X-ray structures of the known compounds 2 and 3, and of 5, 6 and 7 are presented; the 1H NMR spectra of 6 in toluene-d8 show that there is restricted rotation about the NC-C6H4Me-4 bond.  相似文献   

5.
The anisyl boronic acids, 2-OMe-3-R2-5-R1-C6H2B(OH)2 (R1=R2=H (a); R1=H, R2=Ph (b); R1=Me, R2=H (c); R1=Cl, R2=H (d); R1=t-Bu, R2=H (e)), have been employed in Suzuki cross-coupling reactions with either 2-bromo-6-formylpyridine (I) or 2-bromo-6-acetylpyridine (II) generating, following a facile deprotection step, the 2-phenoxy-6-carbonylpyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-(CHO)C5H3N (R1=R2=H (1a); R1=Me, R2=H (1c); R1=Cl, R2=H (1d); R1=t-Bu, R2=H (1e)) and 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-(CMeO)C5H3N (R1=R2=H (2a); R1=H, R2=Ph (2b)). Condensation reactions of 1 and 2 with 2,6-diisopropylaniline proceed smoothly to give the 2-phenoxy-6-iminopyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-{CHN(2,6-i-Pr2C6H3)}C5H3N (R1=R2=H (3a); R1=Me, R2=H (3c); R1=Cl, R2=H (3d); R1=t-Bu, R2=H (3e)) and 2-(2′-OH-3′-R2-5′-R2-C6H2)-6-{CMeN(2,6-i-Pr2C6H3)}C5H3N (R1=H, R2=Ph (4a), R1=H, R2=Ph (4b)). Reduction of the imino unit (and concomitant C-C bond formation) in 3 can be achieved by treatment with trimethylaluminium or methyllithium which, following hydrolysis, furnishes the racemic chiral 2-phenoxy-6-(methanamino)pyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-{CHMe-NH(2,6-i-Pr2C6H3)}C5H3N (R1=R2=H (5a); R1=Me, R2=H (5c); R1=Cl, R2=H (5d); R1=t-Bu, R2=H (5e)). This work represents a straightforward and rapid synthetic route to libraries of sterically and electronically variable phenoxy-substituted imino- and methanamino-pyridines, which are expected to act as useful ligands or proligands for late and early transition metal-mediated alkene polymerisation catalysis.  相似文献   

6.
Linked bis(β-diketiminato) rare-earth metal complexes based on the ethylene-bridged ligand [C2H4(BDIDClP)2]H2 [DClP = 2,6-Cl2C6H3] and the cyclohexyl-bridged ligands [Cy(BDIAr)2]H2 [Ar = PMP (= p-MeOC6H4), Mes (= 2,4,6-Me3C6H2), DIPP (= 2,6-iPr2C6H3)] were prepared via amine elimination starting from [Ln{N(SiMe3)2}3] (Ln = La, Y). The three cyclohexyl-bridged complexes [{(R,R)-Cy(BDIMes)2}YN(SiMe3)2] ((R,R)-3), [{(R,R)-Cy(BDIMes)2}LaN(SiMe3)2] ((R,R)-4), and [{(R,R)-Cy(BDIDIPP)2}LaN(SiMe3)2] ((R,R)-5) were obtained enantiomerically pure. The X-ray crystal structure analysis of the racemic variants of 3 and 4 revealed a distorted square pyramidal coordination geometry around the rare-earth metal, in which the amido ligand occupies the apical position and the two linked β-diketiminato moieties form the basis. The two aromatic substituents adopt a transoid arrangement and both β-diketiminato moieties are bound in a η5 coordination mode with close Ln?C contacts. Due to the smaller ionic radius of yttrium vs. lanthanum, the front side of the yttrium complex 3 is sterically more hindered than in the lanthanum complex 4, but there is much more empty coordination space on the rear side, which may rationalize the observed differences in selectivity of 3 in comparison to 4. The catalytic efficiency of the β-diketiminato complexes was strongly affected by steric factors such as ionic radius of the metal and the steric bulk of the aryl substituents, which is an indication for highly steric encumbered catalytic species. The complexes displayed good to moderate catalytic activity in the hydroamination/cyclization of aminoalkenes depending on the steric hindrance around the metal center. The sterically most demanding diisopropylphenyl-substituted complex (R,R)-5 displayed significantly higher enantioselectivities (up to 76% ee), but lower catalytic activity in comparison to the sterically more open mesityl-substituted complex (R,R)-4. The smaller yttrium metal center in complex (R,R)-3 led to reduced activity as well as a reversal in enantioselectivity, which may be rationalized by a change of the approach of the alkene moiety to the Ln-amido bond in the cyclization transition state.  相似文献   

7.
The phosphorus ylides Ph3PCHC(O)C6H4R (R = 4-Me 1a, 4-Br 1b) react with PdCl2 in equimolar ratios to give the C,C-orthopalladated [Pd{CHP(C6H4)Ph2CO-C6H4-R)}(μ-Cl)]2 (R = 4-Me 2a, 4-Br 2b) which react with NaClO4/dppe, NaClO4/dppm, py and PPh3 to give the mononuclear derivatives [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppe-P,P′)[(ClO4) (R = 4-Me 3a, 4-Br 3b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppm-P,P′)[(ClO4 ( (R = 4-Me 4a, 4-Br 4b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}Cl(L)] (L = py, R = 4-Me 5a, 4-Br 5b, L = PPh3, R = 4-Me 6a, 4-Br 6b). The C, C-metalated chelate are demonstrated by an X-ray diffraction study of 3a and 4a. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR.  相似文献   

8.
The ansa-bis(cyclopentadiene) compounds, Me2Si(C5HPh4)(C5H4R) (R = H (2); But (3)), have been prepared by the reaction of C5HPh4(SiMe2Cl) (1) with Na(C5H5) or Li(C5H4But), respectively, and transformed to the di-lithium derivatives, Li2{Me2Si(C5Ph4)(C5H3R)} (R = H (4); But (5)), by the action of n-butyllithium. The ansa-zirconocene complexes, [Zr{Me2Si(η5-C5Ph4)(η5-C5H3R)}Cl2] (R = H (6); But (7)), were synthesized from the reaction of ZrCl4 with 4 or 5, respectively. Compounds 6 and 7 have been tested in the polymerization of ethylene and compared with their methyl-substituted analogues, [Zr{Me2Si(η5-C5Me4)(η5-C5H3R)}Cl2] (R = H (8); But (9)). Whilst 8 and 9 are catalytically active, the tetraphenyl-substituted complexes 6 and 7 proved to be inactive in the polymerization of ethylene. This phenomenon has been explained by DFT calculations based on the reaction intermediates in the polymerization processes involving 6 and 7, which showed that the extraction of a methyl group from the zirconocene complex to form the cationic active specie is endothermic and therefore unfavourable.  相似文献   

9.
Terminal alkynes (HCCR) (R=COOMe, CH2OH) insert into the metal-carbyne bond of the diiron complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R=Xyl, 1a; CH2Ph, 1b; Me, 1c; Xyl=2,6-Me2C6H3), affording the corresponding μ-vinyliminium complexes [Fe2{μ-σ:η3-C(R)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, R=COOMe, 2; R=CH2Ph, R=COOMe, 3; R=Me, R=COOMe, 4; R=Xyl, R=CH2OH, 5; R=Me, R=CH2OH, 6). The insertion is regiospecific and C-C bond formation selectively occurs between the carbyne carbon and the CH moiety of the alkyne. Disubstituted alkynes (RCCR) also insert into the metal-carbyne bond leading to the formation of [Fe2{μ-σ:η3-C(R)C(R)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R=Xyl, 8; R=Et, R=Xyl, 9; R=COOMe, R=Xyl, 10; R=COOMe, R=CH2Ph, 11; R=COOMe, R=Me, 12). Complexes 2, 3, 5, 8, 9 and 11, in which the iminium nitrogen is unsymmetrically substituted, give rise to E and/or Z isomers. When iminium substituents are Me and Xyl, the NMR and structural investigations (X-ray structure analysis of 2 and 8) indicate that complexes obtained from terminal alkynes preferentially adopt the E configuration, whereas those derived from internal alkynes are exclusively Z. In complexes 8 and 9, trans and cis isomers have been observed, by NMR spectroscopy, and the structures of trans-8 and cis-8 have been determined by X-ray diffraction studies. Trans to cis isomerization occurs upon heating in THF at reflux temperature. In contrast to the case of HCCR, the insertion of 2-hexyne is not regiospecific: both [Fe2{μ-σ:η3-C(CH2CH2CH3)C(Me)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 13; R=Me, 15) and [Fe2{μ-σ:η3-C(Me)C(CH2CH2CH3)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 14, R=Me, 16) are obtained and these compounds are present in solution as a mixture of cis and trans isomers, with predominance of the former.  相似文献   

10.
Various (adamantylimido)vanadium(V) dialkyl complexes containing aryloxo ligands, V(NAd)(CH2SiMe3)2(OAr) [Ad = 1-adamantyl (1); Ar = Ph (a), 4-FC6H4 (b), 2,6-F2C6H3 (c), 2,6-Me2C6H3 (d), C6F5 (e)], have been prepared and identified. These complexes were employed as the catalyst precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) in the presence of PMe3 at 80 °C. The activity was strongly affected by the aryloxo substituent and increased in the order: C6H5 < 4-FC6H4 < 2,6-Me2C6H3 << 2,6-F2C6H3, C6F5. The same trend was observed in the ROMPs by the arylimido-aryloxo analogues, V(NAr′)(CH2SiMe3)2(OAr) (2a-e; Ar′ = 2,6-Me2C6H3), under the same conditions, and the activities by the arylimido analogues were generally higher than the adamantylimido analogues in most case. The (imido)vanadium(V) complexes containing O-2,6-F2C6H3 (1,2c) or OC6F5 (1,2e) exhibited high catalytic activities, and these results strongly suggest that electronic as well as steric factors play a role. Living ring-opening polymerization of THF proceeded in the presence of V(NAd) (CH2SiMe3)(OAr)2 (Ar = 2,6-Me2C6H3, C6F5) and [Ph3C][B(C6F5)4], affording high molecular weight polymers with narrow molecular weight distributions (ex. Mn = 2.11 × 105, Mw/Mn = 1.18).  相似文献   

11.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

12.
Treatment at ambient temperature in diethyl ether of one equivalent of [Li{CH(SiMe3)(SiMe2OMe)}]8 (A) with (i) two equivalents of PhCN, or (ii) successive equivalent portions of ButCN and PhCN gave from (i) (1) and (2) as well as the known lithium 1-azaallyl [Li{N(SiMe2OMe)C(Ph)CH(SiMe3)}]3, and from (ii) (3) The latter was also obtained from the known [Li{N(SiMe2OMe)C(But)CH(SiMe3)}]2 and PhCN under similar conditions. Recrystallisation of 2 from THF/hexane afforded (2). X-ray diffraction data on 2, 2 and 3 are presented; data for 1 were only adequate to confirm its gross tetrameric structure. The particularly novel feature of these transformations of the lithium alkyl A into lithium β-diketiminates 1, 2, 2 or 3 is that while the first 1,3-carbon to nitrogen shift from the α-carbon of A is both silicotropic and regiospecific (in so far as SiMe2OMe > SiMe3 in migratory aptitude), the second migration is indiscriminate: silicotropy yielding 1 or 3 but prototropy giving 2 (or 2). Consistent with these observations, the central carbon atom of the β-diketiminato ligand has significant carbanionic character in 2 or 2, attributed to its stabilisation by the exocyclic Me3Si at C2, whereas in 1 or 3 there is π-delocalisation.  相似文献   

13.
Molybdenum dithiopropiolato complexes, [(η5-C5R4R)Mo(CO)22-S2CCCPh)] (R=H, R=Me 1a, R=R=H 1b; R=R=Me 1c) react with trimethylamine-N-oxide (TMNO · 2H2O) under mild thermolysis to form 5-phenyl-1,2-dithiole-3-thione (2). The reaction proceeds through the formation of the oxo-complexes, [(η5-C5R4R)Mo(O)(η3-S2CCCPh)] (R=H, R=Me 3a, R=R=H 3b; R=R=Me 3c). Direct reaction of 3a-c with TMNO · 2H2O under thermolysis also results in formation of 2.  相似文献   

14.
Two new amido binuclear complexes {(1)YN(SiMe3)2}2 · C7H8 (3 · C7H8) and {(2)SmN(SiMe3)2}2 · C6H14 (4 · C6H14) have been readily prepared in good yields by amine elimination reaction between Ln[N(SiMe3)2]3 (Ln = Sm, Y) and chiral NNO ligands, (S)-2-(pyridin-2-ylmethylamino)-2′-hydroxy-1,1′-binaphthyl (1H2) and (S)-5,5′,6,6′,7,7′,8,8′-octahydro-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (2H2), respectively. They both have been characterized by various spectroscopic techniques, elemental analyses, and X-ray diffraction analyses. They are active catalysts for asymmetric hydroamination/cyclization of aminoalkenes and ring-opening polymerization of rac-lactide, affording cyclic amines in excellent conversions with moderate ee values and isotactic-rich polylactides, respectively.  相似文献   

15.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

16.
Reactions of [N(C6H3i-Pr2-2,6)(SiMe3)]2LnCl(THF) (Ln=Nd, Yb) with two equivalents of MeLi in a mixture solution of toluene and Et2O gave [N(C6H3i-Pr2-2,6)(SiMe3)]2LnCH3(μ-CH3)Li(THF)3·PhCH3 (Ln=Nd (1), Yb (2)) in good isolated yields as crystalline solids. The single-crystal structural analysis of 2 revealed that the coordination geometry of ytterbium ion is best described as a distorted pseudo-tetrahedron. Both 1 and 2 are active for the polymerization of methyl methacrylate to give syndiotactic-rich and high molecular weight polymers (Mn>104) with relatively narrow molecular weight distributions (Mw/Mn<2).  相似文献   

17.
Alkane elimination reaction between Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with one equivalent of the amidines with different steric demanding HL ([CyC(N-2,6-iPr2C6H3)2]H (HL1), [CyC(N-2,6-Me2C6H3)2]H (HL2), [PhC(N-2,6-Me2C6H3)2]H (HL3)) in THF afforded a series of mono(amidinate) rare earth metal bis(alkyl) complexes [CyC(N-2,6-iPr2C6H3)2]Ln(CH2SiMe3)2(THF) (Ln = Y (1), Lu (3)), [CyC(N-2,6-Me2C6H3)2]Ln(CH2SiMe3)2(THF)2 (Ln = Y (4), Lu (6)), and [PhC(N-2,6-Me2C6H3)2]Y(CH2SiMe3)2(THF)2 (7) in 75–89% isolated yields. For the early lanthanide metal Nd, THF slurry of NdCl3 was stirred with three equiv of LiCH2SiMe3 in THF, followed by addition of one equiv of the amidines HL1 or HL2 gave an “ate” complex [CyC(N-2,6-iPr2C6H3)2]Nd(CH2SiMe3)2(μ-Cl)Li(THF)3 (2) in 48% yield and a neutral [CyC(N-2,6-Me2C6H3)2]Nd(CH2SiMe3)2(THF)2 (5) in 52% yield, respectively. They were characterized by elemental analysis, FT-IR, NMR spectroscopy (except for 2 and 5 for their strong paramagnetic property). Complexes 2, 3, 4 and 5 were subjected to X-ray single crystal structure determination. These neutral mono(amidinate) rare earth metal bis(alkyl) complexes showed activity towards l-lactide polymerization to give high molecular weight and narrow molecular weight distribution polymers.  相似文献   

18.
Reaction of bis(amide) sodium Na2[(1R,2R)-(−)-1,2-(NSiMe3)2-C6H10] (Na2[L1]) with Ti(OiPr)2Cl2 in different conditions gave mixed-ligand complexes [Ti(OiPr)Cl][L1] (1) or [Ti(OiPr)2Cl]2[L1] (2); 2 is a dinuclear titanium example in which Ti atoms are bridged by nitrogen and oxygen atoms simultaneously forming a distorted rhombic core. Reaction of the amine-amidinate ligand (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-(NHSiMe3)-C6H10(Li[L2]) or rarely linked bis(amidinate) ligand Li2[(1R,2R)-(−)-1,2-{NC(Ph)N(SiMe3)}2-C6H10](Li2[L3]) with ZrCl4 yielded the unbridged and bridged bis(amidinate) complexes ZrCl2[L2]2 (3) and [ZrCl2(THF)][L3] (4), respectively; Moreover, the reaction of (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-Li(NSiMe3)C6H10(Li2[L2]) with Ti(OiPr)2Cl2 gave a new type of tridentate amido-amidinate product [Ti(OiPr)2][L2] (6), which is a distinct model compared to [Ti(OiPr)2Cl][L2] (5) yielded from Li[L2]. All the products have been characterized by X-ray crystallography and the structural studies are presented detailedly comparing with relevant compounds.  相似文献   

19.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

20.
Three monochlorotitanium complexes Cp′Ti(2,4-tBu2-6-(CPh2O)C6H2O)Cl [Cp′ = η5-C5H5 (2), η5-C5(CH3)5 (3), η5-C5H2Ph2CH3 (4)] have been synthesized in high yields (>90%) by the reaction of corresponding Cp′TiCl3 with the dilithium salt of ligand 2,4-tBu2-6-(CPh2OH)C6H2OH (1). When activated by [Ph3C]+[B(C6F5)4] and AliBu3, complexes 24 exhibit reasonable catalytic activity for ethylene polymerization, producing polyethylenes with moderate molecular weights and melting points. Addition of excess water to complex 2 gave the oxo-bridged complex [Ti(η5-C5H5)(2,4-tBu2-6-(CPh2O)C6H2O)]2O (5). Complexes 4 and 5 were characterized by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号