首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cationic methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(Py)][BPh4] (1) as a single isomer with Py in the trans to PPh3 position, is formed upon the reaction of cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] with pyridine in methylene chloride solution.Complex 1 was characterized by elemental analysis and by 31P{1H} and 1H NMR spectra.Cationic pentacoordinate acetyl complexes, trans-[Rh(Acac)(PPh3)2(COCH3)][BPh4] (2) and trans-[Rh(BA)(PPh3)2(COCH3)][BPh4] (3), are prepared by action of carbon monoxide on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4], respectively, in methylene chloride solutions.Complexes 2 and 3 were characterized by elemental analysis and by IR, 31P{1H}, 13C{1H} and 1H NMR. According to NMR data, 2 and 3 in solution are non-fluxional trigonal bipyramids with β-diketonate and acetyl ligands in the equatorial plane and axial phosphines.In solutions, 2 and 3 gradually isomerize into octahedral methyl carbonyl complexes trans-[Rh(Acac)(PPh3)2(CO)(CH3)][BPh4] (4) and trans-[Rh(BA)(PPh3)2(CO)(CH3)][BPh4] (5), respectively.Complexes 4 and 5 were characterized by IR, 31P{1H}, 13C{1H} and 1H NMR, without isolation.Upon the action of PPh3 on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)] [BPh4], reductive elimination of the methyl ligand as a phosphonium salt, [CH3PPh3][BPh4], occurs to give square planar rhodium(I) complexes [Rh(Acac)(PPh3)2] and[Rh(BA)(PPh3)2], respectively. The reaction products were identified in the reaction mixtures by 31P{1H} and 1H NMR.  相似文献   

2.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

3.
Treating the complexes [Rh(TFA)(PPh3)2], [Rh(HFA)(PPh3)2], and [Rh(TFA)(Cod)] (TFA - trifluoroacetylacetonate, HFA - hexafluoroacetylacetonate, Cod - 1,5 cyclooctadiene) with an excess of NaBPh4 in acetonitrile yields the rhodium(I) complexes with coordinated [BPh4] anion, [Rh(PPh3)2(π-PhBPh3)] · 2MeCN (I) and [Rh(Cod)(π-PhBPh3)] (II). The reactions present a new example of β-diketonate ligand replacement. The 1H, 31P, and 11B NMR spectra of I and II are discussed. [Rh(PPh3)2(π-PhBPh3)] has been characterized by single crystal X-ray analysis.  相似文献   

4.
A series of mononuclear ruthenium complexes containing pyridine- and pyrimidine-2-thiolato ligands was prepared and characterized. The new compounds of general formula CpRu(PPh3)(κ2S,N-SR) (1) (SR = pyridine-2-thiolate (a), pyrimidine-2-thiolate (b)) were prepared directly by reacting the thiolato anions (RS) with CpRu(PPh3)2Cl. Complexes 1 readily react with NOBF4 or CO in THF at room temperature to give [CpRu(PPh3)(NO)(κ1S-HSR)][BF4]2 (2) and CpRu(PPh3)(CO)(κ1S-SR) (3), respectively. The one-pot reaction of CpRu(PPh3)2Cl, thiolato anions and bis(diphenylphosphino)ethane (dppe) gave CpRu(dppe)(κ1S-SR) [dppe: Ph2PCH2CH2PPh2 (4)]. The complex salts, [CpRu(PPh3)21S-HSR)]BPh4 (5) are prepared by mixing CpRu(PPh3)2Cl, HSR and NaBPh4 at room temperature. The structures of CpRu(PPh3)(κ2S,N-Spy) (1a), [CpRu(PPh3)(NO)(κ1S-HSpy)][BF4]2 (2a) and CpRu(PPh3)(CO)(κ1S-Spy) (3a), (py = C5H4N) have been determined.  相似文献   

5.
[RhH(CO)(PPh3)2] (1) reacts with Et3N·3HF to give the fluoro compound [RhF(CO)(PPh3)2] (2). In a comparable reaction [RhF(PEt3)3] (5) has been obtained from [RhH(PEt3)3] (3) or [RhH(PEt3)4] (4) with substoichiometric amounts of Et3N·3HF in THF. If the latter reaction is carried out in benzene, the complexes 5, cis-mer-[Rh(H)2F(PEt3)3] (6) and cis-fac-[Rh(H)2F(PEt3)3] (7) are obtained. Treatment of 5 with HCl in ether effects the generation of [RhCl(PEt3)3] (8) and the bifluoride compound [Rh(FHF)(PEt3)3] (9), which can be converted into 5 in the presence of Et3N and Cs2CO3. Treatment of 5 with HSiR2Ph (R=Ph, Me) leads to the formation of 3 and the rhodium(III) silyl complexes fac-[Rh(H)2(SiR2Ph)(PEt3)3] (10: R=Ph, 11: R=Me).  相似文献   

6.
A novel iridium(I) complex bearing a chelate-coordinated pyridine-2-thiolate ligand [Ir(η2-SNC5H4)(PPh3)2] (2) was prepared by the reaction of iridium ethylene complex [IrCl(C2H4)(PPh3)2] (1) with lithium salt of pyridine-2-thiol (Li[SNC5H4]). On the treatment of iridium(I) complex 2 with chloroform, iridium(III) dichloro-complex [IrCl22-SNC5H4)(PPh3)2] (3) was formed. Reactions of complex 2 with methyldiphenylsilane, acetic acid, and p-tolylacetylene afforded iridium(III) hydride complexes [IrH(SiMePh2)(η2-SNC5H4)(PPh3)2] (4), [IrH(O2CCH3)(η2-SNC5H4)(PPh3)2] (5), and [IrH(CC(p-tolyl))(η2-SNC5H4)(PPh3)2] (6), respectively. Complex 2 catalyzed dimerization of terminal alkynes leading to enynes (7) with high E-selectivity via C-H bond activation.  相似文献   

7.
The synthesis and characterization of novel amidoamine-based metallodendrimers with heterobimetallic end-grafted amidoferrocenyl-palladium-allyl chloride units is described. Dendrimer (Fe((η5-C5H4PPh2)(η5-C5H4))C(O)HNCH2CH2NHC(O)CH2CH2)N[CH2CH2N(CH2CH2C(O)NHCH2CH2NH-C(O)(Fe(η5-C5H4)(η5-C5H4PPh2)))2]2 (9-Fe) and the corresponding metal species (Fe((η5-C5H4PPh2(Pd(η3-C3H5)Cl))(η5-C5H4))C(O)HNCH2CH2NHC(O)CH2CH2)N[CH2CH2N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2(Pd(η3-C3H5)Cl))))2]2 (9-Fe-Pd) were prepared by a consecutive divergent synthesis methodology including addition-amidation cycles, standard peptide coupling, and coordination procedures. For comparative reasons also the monomeric and dimeric molecules (Fe(η5-C5H4PPh2)(η5-C5H4C(O)NHnC3H7)) (5-Fe) and [Fe(η5-C5H4PPh2)(η5-C5H4C(O)NHCH2)]2 (6-Fe) as well as N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2)))3 (7-Fe) and [CH2N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2)))2]2 (8-Fe) were prepared from Fe(η5-C5H4PPh2)(η5-C5H4CO2H) (3). Using [Pd(η3-C3H5)Cl]2 (4) as palladium source heterobimetallic metallodendrimers (Fe(η5-C5H4PPh2(Pd(η3-C3H5)Cl))(η5-C5H4C(O)NHnC3H7)) (5-Fe-Pd), [Fe(η5-C5H4PPh2(Pd(η3-C3H5)Cl))(η5-C5H4C(O)NHCH2)]2 (6-Fe-Pd), N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2(Pd(η3-C3H5)Cl))))3 (7-Fe-Pd) and [CH2N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2(Pd(η3-C3H5)Cl))))2]2 (8-Fe-Pd) were synthesized. Additionally, seleno-phosphines of 5-Fe-Se and 9-Fe-Se, respectively, were prepared by addition of elemental selenium to 5-Fe or 9-Fe to estimate their σ-donor properties.The palladium-containing amidoamine supports are catalytically active in the Heck-Mizoroki cross-coupling of iodobenzene with tert-butyl acrylate. The catalytic data are compared to those obtained for the appropriate mononuclear and dinuclear compounds 5-Fe-Pd and 6-Fe-Pd. This comparison confirms a positive cooperative effect. The mercury drop test showed that (nano)particles were formed during catalysis, following on heterogeneous carbon-carbon cross-coupling.  相似文献   

8.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

9.
Reduction of [NMe4]2[ReBr5(NO)] (1) with zinc in acetonitrile leads to the known trisacetonitrile compound [ReBr2(CH3CN)3(NO)] (2). Attempts to turn 2 into a dihydrogen or a hydride complex applying direct reaction with H2 or with H2 and a base were unsuccessful. Complex 2 could be transformed into [ReBr(BF4)mer-(CH3CN)3(NO)] (2a) with AgBF4 in acetonitrile and was used as a starting material in a ligand exchange reaction with the water soluble phosphine 1,3,5-triaza-7-phosphadamantane (PTA) to obtain the complex [ReBr2(NO)(PTA)3] (3). When the reduction of 1 with zinc was carried out in the presence of PTA in acetonitrile, the disubstituted complex [ReBr2(CH3CN)(NO)(PTA)2] (4) was formed. The olefin-coordinated rhenium complexes [ReBr2(NO)(CH2CH2)(PTA)2] (5a) and [ReBr2(NO)(PhCHCH2)(PTA)2] (5b) were obtained from the reaction of 4 with the corresponding olefins. Complex 4 reacts further with NaHBEt3 in THF to give the dihydride [ReH2(THF)(NO)(PTA)2] (6). In the presence of ethylene 6 is transformed into the ethyl hydride complex [ReH(CH2CH3)(η2-C2H4)(NO)(PTA)2] (7). Complexes 6 showed catalytic activity in the hydrogenation of olefins.  相似文献   

10.
Chloro-complexes [OsCl(N-N)P3]BPh4 (12) [N-N=2,2-bipyridine (bpy) and 1,10-phenanthroline (phen); P=P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl4(N-N) to react with zinc dust in the presence of phosphites. Treatment of the chloro-complexes 12 with NaBH4 yielded, in the case of bpy, the hydride [OsH(bpy)P3]BPh4 (4) derivatives. Mono-phosphite [OsCl(bpy)2P]BPh4 (3) complexes were also prepared by reacting the [OsCl2(bpy)2]Cl compound with zinc dust in the presence of phosphite. Protonation reaction of the hydride [OsH(bpy)P3]+ (4) cations with Brønsted acid was studied and led to thermally unstable (above 0 °C) dihydrogen [Os(η2-H2)(bpy)P3]2+ (4*) derivatives. The presence of the H2 ligand is supported by variable-temperature NMR spectra and T1min measurements. Carbonyl [Os(CO)(bpy){P(OEt)3}3](BPh4)2 (5), nitrile [Os(CH3CN)(bpy){P(OEt)3}3](BPh4)2 (6), and hydrazine [Os(bpy)(NH2NH2){P(OEt)3}3](BPh4)2 (7) complexes were prepared by substituting the H2 ligand in the η2-H2 (4*) derivatives. Aryldiazene complex [Os(C6H5NNH)(bpy){P(OEt)3}3](BPh4)2 (8) was also obtained by allowing the hydride [OsH(bpy)P3]BPh4 to react with phenyldiazonium cation.  相似文献   

11.
Three novel imido rhenium complexes of biologically relevant ligand 2-hydroxymethylbenzimidazole: [Re(p-NC6H4CH3)Cl2(hmbzim)(PPh3)]·CHCl3 (1), [Re(p-NC6H4CH3)Br2(hmbzim)(PPh3)] (2) and [Re(p-NC6H4CH3)(hmbzim)2(PPh3)]ReO4·MeOH (3) have been synthesized and characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The electronic spectra of 1 and 3 were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ. Additional information about binding in the complexes 1 and 3 was obtained by NBO analysis, which confirms a linear coordination mode of the p-NC6H4CH3 ligand and triple bond between the rhenium and imido ligand.  相似文献   

12.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

13.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

14.
Four new ligands, (4-methyl-phenyl)-pyridin-2-ylmethylene-amine (A), (2,3-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (B), (2,4-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (C) and (2,5-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (D), and their corresponding copper(I) complexes, [Cu(A)2]ClO4 (1a), [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c), [Cu(D)2]ClO4 (1d), [Cu(A)(PPh3)2]ClO4 (2a), [Cu(B)(PPh3)2]ClO4 (2b), [Cu(C)(PPh3)2]ClO4 (2c) and [Cu(D)(PPh3)2]ClO4 (2d), have been synthesized and characterized by CHN analyses, 1H and 13C NMR, IR and UV–Vis spectroscopy. The crystal structures of [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c) and [Cu(A)(PPh3)2]ClO4 · 1/2CH3CN (2a) were determined from single crystal X-ray diffraction. The coordination polyhedron about the copper(I) center in the three complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for the complexes.  相似文献   

15.
Reaction between Os(SiCl3)Cl(CO)(PPh3)2 and five equivalents of MeLi produces a colourless intermediate, tentatively formulated as the lithium salt of the six-coordinate, dimethyl, trimethylsilyl-containing complex anion, Li[Os(SiMe3)(Me)2(CO)(PPh3)2]. Reaction of this material with ethanol releases methane and gives the red, coordinatively unsaturated methyl, trimethylsilyl-containing complex, Os(SiMe3)(Me)(CO)(PPh3)2 (1). An alternative synthesis of 1 is to add one equivalent of MeLi to Os(SiMe3)Cl(CO)(PPh3)2, which in turn is obtained by adding three equivalents of MeLi to Os(SiCl3)Cl(CO)(PPh3)2. Treatment of 1 with p-tolyl lithium, again gives a colourless intermediate which may be Li[Os(SiMe3)(Me)(p-tolyl)(CO)(PPh3)2], and reaction with ethanol gives the red complex, Os(SiMe3)(p-tolyl)(CO)(PPh3)2 (3). Complexes 1 and 3 are readily carbonylated to Os(SiMe3)(Me)(CO)2(PPh3)2 (2) and Os(SiMe3)(p-tolyl)(CO)2(PPh3)2 (4), respectively. Heating Os(SiMe3)Cl(CO)(PPh3)2 in molten triphenylphosphine results only in loss of the trimethylsilyl ligand and formation of the previously known complex containing an ortho-metallated triphenylphosphine ligand, Os(κ2(C,P)-C6H4PPh2)Cl(CO)(PPh3)2. In contrast, heating the five-coordinate osmium-methyl complex, Os(SiMe3)(Me)(CO)(PPh3)2 (1), in the presence of triphenylphosphine results mainly, not in tetramethylsilane elimination, but in ortho-silylation as well as ortho-metallation of different triphenylphosphine ligands giving, Os(κ2(Si,P)-SiMe2C6H4PPh2)(κ2(C,P)-C6H4PPh2)(CO)(PPh3) (5). A byproduct of this reaction is the non-silicon containing di-ortho-metallated complex, Os(κ2(C,P)-C6H4PPh2)2(CO)(PPh3) (6). A similar reaction occurs when Os(SiMe3)(Me)(CO)(PPh3)2 (1) is heated in the presence of tri(N-pyrrolyl)phosphine producing Os(κ2(Si,P)-SiMe2C6H4PPh2)(κ2(C,P)-C6H4PPh2)(CO)[P(NC4H4)3] (7) but a better synthesis of 7 is to treat 5 directly with tri(N-pyrrolyl)phosphine. Heating the six-coordinate complex, Os(SiMe3)(Me)(CO)2(PPh3)2 (2), gives two complexes both containing ortho-metallated triphenylphosphine, one with loss of the trimethylsilyl ligand, giving the known complex, Os(κ2(C,P)-C6H4PPh2)H(CO)2(PPh3), and the other with retention of the trimethylsilyl ligand, giving Os(SiMe3)(κ2(C,P)-C6H4PPh2)(CO)2(PPh3) (8). Crystal structure determinations for 5, 6, 7 and 8 have been obtained.  相似文献   

16.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

17.
The ruthenium and iron dicarbonyl complexes Ru(MeP(CH2CH2PMe2)2)(CO)2 (1), Ru(MeP(CH2CH2CH2PMe2)2)(CO)2 (2) and Fe(MeP(CH2CH2CH2PMe2)2)(CO)2 (3) bearing strong donor tridentate phosphine ligands were prepared and fully characterised. The structures of the complexes have been established by X-ray diffraction studies. Oxidative addition of MeI to 1-3 proceeds instantaneously at room temperature and affords the corresponding octahedral cationic complexes fac,cis-[RuMe(MeP(CH2CH2PMe2)2)(CO)2]I (5a) and mer,cis-[RuMe(MeP(CH2CH2PMe2)2)(CO)2]I (5b), mer,trans-[MMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6a (M=Ru); 7a (M=Fe)) and mer,cis-[MMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6b (M=Ru); 7b (M=Fe)), respectively. The triphosphine preferentially adopts a facial arrangement in the case of the ethylene bridged tridentate ligand (5a) and a meridional arrangement in the case of the trimethylene bridged ligand (6a-7b). mer,cis-[RuMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6a) undergoes CO insertion to the acetyl complex mer, trans-[Ru(COMe)(MeP(CH2CH2CH2PMe2)2)(CO)2]I (8). Attempts to produce a ketene complex from the deprotonation of 8 were not successful. The acetyl protons in 8 show very low acidity and no reaction occurred when the complex was reacted with bases such as DBU, BEMP (2-tert-Butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorine) or LDA.  相似文献   

18.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

19.
Reaction of copper(I) chloride with 1,3-imidazoline-2-thione (imzSH) in the presence of Ph3P in 1:2:2 or 1:1:2 (M:L:PPh3) molar ratios yielded a compound of unusual composition, [Cu2(imzSH)(PPh3)4Cl2] · CH3OH (1), whose X-ray crystallography has shown that its crystals consist of four coordinated [CuCl(1κS-imzSH)(PPh3)2] (1a), and three coordinated [Cu(PPh3)2Cl] (1b) independent molecules in the same unit cell. In contrast, crystals of complexes of copper(I) bromide/iodide are formed by single molecules of [CuBr(1κS-imzSH)(PPh3)2] · H2O (2) and [CuI(1κS-imzSH)(PPh3)2] (3), respectively, similar to molecule 1a. The related ligand, 1,3-benzimidazoline-2-thione (bzimSH) formed a complex [CuBr(1κS-bzimSH)(PPh3)2] · CH3COCH3 (4), similar to 2. The formation of 1a and 1b has been also revealed by NMR spectroscopy. The NMR spectra of 24 also showed weak signals indicating formation of compounds similar to 1b. It reveals that the lability of the Cu–S bond varies in the order: Cl ? Br ∼ I. Weak interactions {e.g. C–H?π electrons of ring, –NH?halogens/oxygen, C–H?halogens/oxygen, π?π (between rings)} have played an important role in building 2D chains of complexes 14.  相似文献   

20.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号