首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

2.
3.
Trimethylindium reacted with phenyl- and tert-butylhydrazine by the release of methane and the formation of the corresponding dimethylindium hydrazides (1 and 2, respectively). Both products form dimers and possess four-membered In2N2 heterocycles with two exocyclic N-N bonds in their molecular cores. Interestingly, one compound (1) crystallizes with centrosymmetric molecules in which the N-N bonds are located on different sides of the In2N2 ring (C2h), while both N-N bonds are on the same side in 2 (C2v). In contrast, the reaction of tri(tert-butyl)indium with tert-butylhydrazine yielded a quite unexpected product. Partial decomposition occurred, and in a low yield the adduct of tribenzylindium with the unchanged tert-butylhydrazine was isolated. In a remarkable reaction, the trialkylindium derivative did not react with the relatively acidic hydrazine, but by the release of the corresponding alkane with the solvent toluene.  相似文献   

4.
A series of homodinuclear Pt compounds containing the anionic, potentially terdentate NCN ligand (NCN=[C6H3(Me2NCH2)2-2,6]) or its 4-ethynyl derivative were prepared. The two platinum centres are linked together in two different fashions: (i) directly linked by an ethynyl or diethynylphenyl group (head-to-head) and (ii) indirectly bonded by a ethynyl- or butadiynyl-linked bis-NCN ligand (tail-to-tail). The reaction of the head-to-head σ,σ′-ethynylide complex {Pt}CC{Pt} ({Pt}=[Pt(C6H3{CH2NMe2}2-2,6)]+) with [CuCl]n yields {Pt}Cl and [Cu2C2]n, while with [Cu(NCMe)4][BF4] a Cu(I) bridged complex was formed: [(η2-{Pt}CC{Pt})2Cu][BF4]. The results of cyclic voltammetry experiments reveal that both connection modes of the two platinum centres lead to electrochemically independent Pt–NCN units. The X-ray crystal structure analysis of the neutral, tail-to-tail bridging butadiyne bis-NCNH ligand [C6H3(CH2NMe2)-1,3-(CC)-5]2 is reported.  相似文献   

5.
The cleavage of the Se-Se bond in [2-(Me2NCH2)C6H4]2Se2 (1) was achieved by treatment with SO2Cl2 (1:1 molar ratio) or elemental halogens to yield [2-(Me2NCH2)C6H4]SeX [X = Cl (2), Br (3), I (4)]. Oxidation of 1 with SO2Cl2 (1:3 molar ratio) gave [2-(Me2NCH2)C6H4]SeCl3 (5). [2-(Me2NCH2)C6H4]SeS(S)CNR2 [R = Me (6), Et (7)] were prepared by reacting [2-(Me2NCH2)C6H4]SeBr with Na[S2CNR2] · nH2O (R = Me, n = 2; R = Et, n = 3). The reaction of 3 with K[(SPMe2)(SPPh2)N] resulted in isolation of [2-(Me2NCH2)C6H4]Se-S-PMe2N-PPh2S (8). The compounds were characterized by solution NMR spectroscopy (1H, 13C, 31P, 77Se, 2D experiments). The solid-state molecular structures of 2, 4-8 were established by single crystal X-ray diffraction. All compounds are monomeric, with the N atom of the pendant CH2NMe2 arm involved in a three-center-four-electron N?Se-X (X = halogen, S) bond. This results in a T-shaped coordination geometry for the Se(II) atom in 2, 4, 6-8. In 5, the Se(IV) atom achieves a square pyramidal coordination in the mononuclear unit. Loosely connected dimers are formed through intermolecular Se?Cl interactions (3.40 Å); the overall coordination geometry being distorted octahedral. In all compounds hydrogen bonds involving halide or sulfur atoms generate supramolecular associations in crystals.  相似文献   

6.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

7.
A study has been made of reactions involving organometallic compounds containing ortho-Me2NCH2 substituted aryl ligands. The single step syntheses of the new compounds [(2-Me2NCH2C6H4)2TlCl], [ [{(S)-2-Me2NCH(Me)C6H4}2TlCl], [{(S)-2-Me2NCH(Me)C6H4}TlCl2], [{2,6-(Me2NCH2)2C6H3}TlClBr] and [{2,6-(Me2NCH2)2C6H3}HgCl] are described. Stable internal NTl coordination at low temperatures has been established for the C-chiral thallium compounds. Reactions of the other Tl and Hg compounds and of [(2-Me2NCH2C6H4)2Hg] with Pd(O2CMe)2, and also of the reverse reaction of cis-[(2-Me2NCH2C6H4)2Pd] with Hg(O2CR)2 or Tl(O2CR)3, gave transmetallation of one organo ligand and led to a single mono-organopalladium compound and corresponding by-products. Reaction of cis-[(2-Me2NCH2C6H4)2Pd] with Pd(O2CR)2 gave the dimeric compound [{(2-Me2NCH2C6H4)Pd(O2CR)}2]. cis-[(2-Me2NCH2C6H4)2Pt] did not react with Pd(O2CMe)2, while reaction of trans-[(2-Me2NCH2C6H4)2Pt] or cis-[(2-Me2NC6H4CH2)2Pt] with Pd(O2CMe)2 resulted in decomposition. Upon heating, trans-[(2-Me2NCH2C6H4)2Pt] was isomerized to cis-isomer. A redox reaction between [(2-Me2NCH2C6H4)2Hg] and [Pt(COD)2] (COD  1,5-cyclo-octadiene) and [Pd2(DBA)3] (DBA  dibenzylideneacetone) gave the cis-isomers of [(2-Me2NCH2C6H4)2M] (M  Pd, Pt).The results are discussed in terms of influence of internal coordination of the CH2NMe2 group. It is concluded that although internal coordination of the CH2NMe2 ligand can stabilize metal—carbon bonds it cannot prevent cleavage of such bonds by electrophiles. In this respect, there is no difference in the behaviour of Hg(O2CR)2 and Tl(O2CR)3. The reactions are influenced by the metal—nitrogen bond strength, which follows the order PtN > PdN > HgN, TlN. The reactivity of Pt compounds is greatly influenced by their structure and type of ligand. It is proposed that cleavege of PdC bonds occurs mainly by a mechanism involving direct electrophilic attack at the carbon centre.  相似文献   

8.
The asymmetric PCP pincer ligand [C6H4-1-(CH2PPh2)-3-(CH(CH3)PPh2)] (4) has been synthesized in a facile manner in three simple steps in high yield. Metallation of PCP pincer ligand (4) with [Pd(COD)Cl2] affords complex [PdCl{C6H3-2-(CH2PPh2)-6-(CH(CH3)PPh2)}] (7) in good yield.  相似文献   

9.
The bright red title compound 1 was synthesized from (2-lithiophenyl)diphenylamine and bis(pentafluorophenyl)boron chloride. Its reactions with small acids like H2O and HCl proceeded easily giving zwitterionic compounds. For 1 and its water adduct 2 the crystal structures were determined, the latter featuring an ammonium borate structure containing a short intramolecular hydrogen bond bridge. Treatment of 1 with Jutzi's acid, [H(OEt2)2][B(C6F5)4], did not result in protonation of the nitrogen, but reaction of 1 with LiH in the presence of 12-crown-4, led to the isolation of the aminoborate [1-(Ph2N)-2-{B(H)(C6F5)2}C6H4][Li(12-crown-4)] (3). Borohydride 3 reacted with Jutzi's acid to regenerate 1 and liberate hydrogen.  相似文献   

10.
The reactions of organoantimony chloride LSbCl2 (1) (L = [2,6-(Me2NCH2)2C6H3]) with the silver salts of selected carboxylic acids (1:2 molar ratio) resulted to the corresponding organoantimony carboxylates LSbX2, where X = CH3COO for (2); CF3COO for (3). Similar reactions of 1 with the silver salt of the low nucleophilic anion (1:0.5 and 1:1 molar ratio) gave the ionic compounds [LSb(Cl)--Cl-Sb(Cl)L]+[CB11H12] (4), and [LSbCl]+[CB11H12] (5). All compounds were characterized by the help of the elemental analysis, ESI-MS, 1H, 11B, 13C NMR spectroscopy and IR spectroscopy. The solid state structure investigation using single crystal X-ray diffraction technique (3-5) revealed the presence of the strong Sb-N intramolecular dative connections in all cases and also significant differences in the shapes of the coordination polyhedra around the central antimony atoms was observed, i.e. a tetragonal pyramidal environment in 3 (CF3COO groups are placed mutually in trans positions), an unusual chlorine bridged dinuclear cation consisting of one apex (Cl atom) sharing square pyramids in 4, and finally a vacant ψ-trigonal bipyramid around the central antimony atom in 5. Even more, crystallization of 5 from THF provided the single crystals of a THF aduct of 5 [LSbCl(THF)]+[CB11H12]5a, where the central antimony atom is located in a tetragonal pyramidal environment. The solid state structures of 3-5 are retained in solution. Solution structure of the compound 2 was determined by the help of VT-1H NMR spectroscopy and IR spectroscopy showing, that both carboxylates (CH3COO) are unidentate and are placed mutually in cis positions in the coordination polyhedron around the central antimony atom. The whole coordination polyhedron in 2 might be best described as a biccaped - trigonal pyramid, due to the additional Sb-N intramolecular interactions.  相似文献   

11.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

12.
13.
A new chemical oxidant [N(4-C6H4Br)3][B(C6F5)4], was prepared and used to synthesize [Fe(C5H5)2][B(C6F5)4]. The crystal structure of [Fe(C5H5)2][B(C6F5)4] was determined.  相似文献   

14.
The highly electrophilic borane B(C6F5)3 reacts with e.g., n-octadecanol (n-C18H37OH) and n-octadecanethiol (n-C18H37SH) to form equilibrium mixtures of the reactants and their 1:1 adducts (n-C18H37EH)B(C6F5)3 (E = O, S). The latter are acidic, and react with Cp∗MMe3 (M = Ti, Hf) in polar and non-polar solvents to give methane and the unstable complexes [Cp∗MMe2][(n-C18H37E)B(C6F5)3]. The latter are very good initiators for the copolymerization of isobutene with isoprene at relatively high temperatures, giving high conversions to high molecular weight isobutene-isoprene copolymers. The weight average molecular weights are unusually high for the temperatures used, consistent with current theories of the role of weakly coordinating anions. The effects of changing the substituents on the alcohols are also investigated.  相似文献   

15.
The reaction of the anion [(tBuP)3As] (1) with Me2SiCl2 results in nucleophilic substitution of the Cl anions, giving the di- and mono-substituted products [Me2Si{As(PtBu)3}2] (3a) and [Me2Si(Cl){As(PtBu)3}] (3b). Analogous reactions of the pre-isolated [(CyP)4As] anion (2) (Cy = cyclohexyl) with Me2SiCl2 produced mixtures of products, from which no pure materials could be isolated. However, reaction of 2 [generated in situ from CyPHLi and As(NMe2)3] gives the heterocycle [(CyP)3SiMe2] (4). The X-ray structures of 3a and 4 are reported.  相似文献   

16.
The reaction of fluorosilanes XYSiF2 (X = Y = F; X = F, Y = Ph; X = Ph, Y = Me) with diethanolamines and their O-trimethylsilyl derivatives affords novel Si-fluoro substituted quasisilatranes 3, 5 and 9. These compounds were characterized by the multinuclear NMR spectroscopy and X-ray diffraction analysis. Experimental and theoretically calculated electron density distribution functions in crystal structure of 9 have shown that the N → Si coordination bond corresponds to polar bond with pronounced ionic contribution. Calculated N → Si bond order in the compound 9 does not exceed 1/3 of the normal Si-N bond. A strong N → Si coordination bond exists in compounds 3, 5 and 9 the length of which varies in the range 1.98-2.175 Å.  相似文献   

17.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


18.
The results of several MC SCF calculations on CH4, C2H4 and C2H6 with minimun bases of Slater type AO's are reported. The computing method is a quadratically convergent process. Better final energies are obtained if localized MO's are used.  相似文献   

19.
ESR method has been used to identify metastable Ni+ complexes in toluene solution formed by the interaction of [Ni(C4H6)2] with Et2AlCl. Reversible changes in the ground state of Ni+ ions after the introduction of supplementary neutral ligands (PPh3, C2H4) into the system have been established.
Ni+ , [Ni (C4H6)2]n c Et2AlCl. Ni+ (PPh3, C2H4) .
  相似文献   

20.
The crystal structure of tetrakis(methyldiphenylphosphine)iridium(I) tetrafluoroborate with cyclohexane of solvation, [Ir(PPh2Me)4]BF4·C6H12, has been determined from a three-dimensional X-ray analysis. The compound has been analysed in space group C2/c of the monoclinic system. There are twelve molecules (i.e. 1.5 molecules per asymmetric unit) in a cell of dimensions a = 36.804(8), b = 22.93(2), c = 21.676(4) Å, β = 121.41(1)°. Block-diagonal least-squares refinement has given a final R-factor of 0.060 for 7905 reflections having I > 3σ(I).The structure consists of two crystallographically distinct, but structurally similar molecules, one on a general position and one on a crystallographic two-fold axis. The phosphine ligands around the iridium atoms are in a very distorted square-planar arrangement. The reactions of the cation axe discussed in terms of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号