首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The reactions between Ru2(ap)4Cl and the appropriate lithiated aryl acetylene resulted in the complexes Ru2(ap)4(CC4-C6H4CCX) with X as SiMe3 (1), H (2) and Ru2(ap)4 (3), 1,3-[Ru2(ap)4(CC)]2(C6H4) (4), 1,3-[{Ru2(ap)4(CC)}2]C6H35-CCH (5) and 1-[Ru2(ap)4(CC)]C6H33,5-(CCH)2 (6), where ap is 2-anilinopyridinate. The spectroscopic and electrochemical properties of the new complexes have been assessed. Complexes 3, 4 and 6 display two-electron oxidation and reductions, implying the absence of any significant electronic interaction between the two Ru2(ap)4 units in these complexes.  相似文献   

2.
Reaction of 2,3,7,8,12,13,17,18-octaethylporphyrin with LiR reagents containing functional groups readily yields meso substituted derivatives suitable for further transformations with residues such as -p-C6H5Br, -p-C6H5-CCH, -p-C6H5-NH2 or -(CH2)3-CHCH2. Similar reactions of tetrabenzoporphyrin with alkyllithium reagents afforded the first entry into meso mono- and dialkylsubstituted tetrabenzoporphyrins while reaction of bicyclo[2.2.2]oct-type masked isoindole precursors with LiR followed by in situ retro-Diels-Alder reaction also afforded the 5-phenyl and 5,10-diphenyltetrabenzoporphyrins in high purity.  相似文献   

3.
Combined use of elevated pressure in the liquid phase (15 kbar), a metal template and the sulfur nucleophilicity of [Pt2(μ-S)2(P-P)2] (P-P = diphosphine or 2 · monophosphine) facilitates the one-pot synthesis of 3,8-dibenzo-1,6-dithiacyclodecane. Under r.t.p., nucleophilic addition of [Pt2(μ-S)2(P-P)2] [P-P = 2 · PPh3; Ph2P(CH2)nPPh2, n = 2, 1,2-bis(diphenylphosphino)ethane (dppe), 3, 1,3-bis(diphenylphosphino)propane (dppp)] with α-α′-dichloro-o-xylene would terminate as a dithiolato bridged cation viz. [Pt2(μ-SCH2C6H4CH2S)(P-P)2]2+. Under high pressure (15 kbar) at r.t., these stoichiometric reactions progress via a “catalytic-like” pathway to yield 3,8-dibenzo-1,6-dithiacyclodecane (up to 35%), and a series of mechanistically relevant intermediates and byproducts. The dithiolated intermediates [Pt2(μ-SCH2C6H4CH2S)(P-P)2]2+ for PPh3 and dppp have been isolated as complexes and their crystal structure determined. The formation of 3,8-dibenzo-1,6-dithiacyclodecane demonstrates a convenient synthetic strategy over the multi-step synthesis of this macrocyclic dithioether.  相似文献   

4.
Using 4-ethynylphenylferrocene (1) as the building block, a new series of rigid-rod alkynylferrocenyl precursors consisting of fluoren-9-one unit, 2-bromo-7-(4-ferrocenylphenylethynyl)fluoren-9-one (2a), 2,7-bis(4-ferrocenylphenylethynyl)fluoren-9-one (2b), 2-trimethylsilylethynyl-7-(4-ferrocenylphenylethynyl)fluoren-9-one (3) and 2-ethynyl-7-(4-ferrocenylphenylethynyl)fluoren-9-one (4) have been prepared in moderate to good yields. The acetylene complex 4 is a useful precursor for the synthesis of well-defined carbon-rich ferrocenyl heterometallic complexes, trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCPt(PEt3)2Ph] (5), trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCPt(PBu3)2CCRC≡CC6H45-C5H4)Fe(η5-C5H5)] (6), trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCM(dppm)2Cl] (M=Ru (7), Os (8)) (R=fluoren-9-one-2,7-diyl). All new complexes have been characterized by FTIR, NMR and UV-Vis spectroscopies and fast atom bombardment mass spectrometry (FABMS). The molecular structures of 1, 2a, 4, 6 and 8 have been determined by single-crystal X-ray studies where an ironiron through-space distance of nanosized dimension (ca. 42 Å) is observed in the trimetallic molecular rod 6. The electronic absorption, luminescence and electrochemical properties of these carbon-rich molecules were investigated and the data were correlated with the theoretical results obtained by the method of density functional theory.  相似文献   

5.
The square-planar platinum(II) complex trans-[(Ph2FcP)2PtCl2] (1) (Fc=ferrocenyl), that is a metal-containing polymer precursor, has been synthesised and its single crystal structure determined. Using 1, new ferrocene-containing platinum ethynyl dimers trans-[(Ph2FcP)2Pt(CCR)2] {R=SiMe3 (2), C6H5 (3) and C6H4-p-NO2 (4)} and a polymer [(Ph2FcP)2Pt(CCC6H2-p-(OC8H17)2CC)]n (5) have been formed by the reaction of the metal precursor with the appropriate mono- and bis-ethynyl ligands. Single crystal X-ray studies of 4 have shown it to exist as two different polymorphic forms, both having trans-geometry with respect to the ferrocenyl phosphines and ethynyl ligands. GPC measurements on the polymer show a high degree of polymerisation with an average molecular weight of ca. 88?000.  相似文献   

6.
A systematic study has been carried out for the use of the palladium-based Extended One Pot (EOP) synthetic protocol toward the preparation of metal alkynyl oligomers of general formula [CCArCCM(L)m]n (M=Pt, Pd). Model compounds of type trans-M(PBu3)2(CCC6H5)2 have been prepared by the reaction of tributyltinethynylbenzene with trans-M(PBu3)2Cl2, in the absence of palladium catalysis, since the presence of catalytic Pd(PPh3)4 yields reaction mixtures containing starting material, product and intermediate complex trans-MCl(PBu3)2(CCC6H5). Palladium catalysis has been used for the formation of the bistinacetylide compounds Bu3SnCCArCCSnBu3 (Ar=C6H4; bis(2,5-n-octyloxy)C6H4). Subsequent coupling of these compounds with MCl2(PBu3)2 in the absence of palladium catalyst yields metal alkynyl oligomers. Comparison of 31P-NMR and gel permeation chromatography (GPC) analyses indicates that the GPC technique represents a reliable method to estimate polymer chain lengths for polymers bearing branched aromatic spacers, in spite of the rigid-rod shape of the polymer backbone. Single crystal X-ray determinations of model compounds demonstrate the essential role of side substituents in the aromatic ring to control the supramolecular order and, as a consequence, the optoelectronic properties of materials.  相似文献   

7.
The reactions of the organometallic 1,4-diazabutadienes, RN=C(R′)C(Me)=NR″ [R = R″ = p-C6H4OMe, R′ = trans-PdCl(PPh3)2 (DAB); R = p-C6H4OMe, R″ = Me, R′ = trans-PdCl(PPh3)2 (DABI; R = R″ = p-C6H4OMe, R′ = Pd(dmtc)-(PPh3), dmtc = dimethyldithiocarbamate (DABII); R = R″ = p-C6H4OMe, R′ = PdCl(diphos), diphos = 1,2-bis(diphenylphosphino)ethane (DABIII)] with [RhCl(COD)]2 (COD = 1,5-cyclooctadiene, Pd/Rh ratio = 12) depend on the nature of the ancillary ligands at the Pd atom in group R′. In the reactions with DAB and DABI transfer of one PPh3 ligand from Pd to Rh occurs yielding [RhCl(COD)(PPh3)] and the new binuclear complexes [Rh(COD) {RN=C(R?)-C(Me)=NR″}], in which the diazabutadiene moiety acts as a chelating bidentate ligand. Exchange of ligands between the two different metallic centers also occurs in the reaction with DABII. In this case, the migration of the bidentate dmtc anion yields [Rh(COD)Pdmtc] and [Rh(COD) {RN=C(R?)C(Me)=NR″}]. In contrast, the reaction with DABIII leads to the ionic product [Rh(COD)- (DABIII)][RhCl2(COD)], with no transfer of ligands. The cationic complex [Rh(COD)(DABIII)]+ can be isolated as the perchlorate salt from the same reaction (Pd/Rh ratio = 1/1) in the presence of an excess of NaClO4. In all the binuclear complexes the coordinated 1,5-cyclooctadiene can be readily displaced by carbon monoxide to give the corresponding dicarbonyl derivatives. The reaction of [RhCl(CO)2]2 with DAB and/or DABI yields trinuclear complexes of the type [RhCl(CO)2]2(DAB), in which the diazabutadiene group acts as a bridging bidentate ligand. Some reactions of the organic diazabutadiene RN=C(Me)C(Me)=NR (R = p-C6H4OMe) are also reported for comparison.  相似文献   

8.
bis(alkoxycarbonyl) complexes of platinum of the type [Pt(COOR)2L] [L = 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), l,4-bis(diphenylphosphino)butane (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppf) or 1,2-bis-(diphenylphosphino)benzene (dpb); R = CH3, C6H5 or C2H5] were obtained by reaction of [PtCl2L] with carbon monoxide and alkoxides. Palladium and nickel complexes gave only carbonyl complexes of the type [M(CO)L] or [M(CO)2L]. The new complexes were characterized by chemical and spectroscopic means. The X-ray structure of [Pt(COOCH3)2(dppf] · CH3OH is also reported. The reactivity of some alkoxycarbonyl complexes was also investigated.  相似文献   

9.
Treatment of [Ti](Cl)(CCSiMe3) (1) {[Ti]=(η5-C5H5)2Ti} with Ni(CO)4 (2) in a 1:1 molar ratio produces the heterobimetallic early-late transition metal complex {[Ti](Cl)(CCSiMe3)}Ni(CO) (3), which features a low-valent Ni(CO) entity stabilized by a datively bonded Cl and a η2-coordinated Me3SiCC ligand. As side-products [Ti]Cl2 (8) and {[Ti](CCSiMe3)2}Ni(CO) (5) are formed. The latter complex can also be synthesized by the reaction of [Ti](CCSiMe3)2 (4) with equimolar amounts of 2. If 3 is reacted with stoichiometric amounts of P(OR)3 (6a, R=C6H5; 6b, R=C6H4CH3-2; 6c, R=C6H4tBu-2) the bis(alkynyl) titanocene 4, (CO)2Ni[P(OR)3]2 (7a, R=C6H5; 7b, R=C6H4CH3-2; 7c, R=C6H4tBu-2), complex 8, {[Ti](μ,η12-CCSiMe3)}2 (9) along with Me3SiCCCCSiMe3 (10) is produced. A possible mechanism for the formation of these species is presented. The solid-state structure of 7b is reported. Complex 7b crystallizes in the tetragonalic space group P-421c with the following parameters: a=14.852(2), b=14.852(2), c=19.410(4) Å, V=4281.5(12) Å3, Z=4 and ρ=1.271 g cm−3. Mononuclear 7b features a Ni(0) centre in a pseudo-tetrahedral environment, caused by the CO and P(OC6H4CH3-2)3 ligands.  相似文献   

10.
The nucleophilic aromatic and vinyl substitution using diaza-18-crown-6 as nucleophile afforded a number of its N,N’-diaryl-[aryl = 2,4-(NO2)2C6H3, 4-C5F4N, 4-CF3C6F4] and N,N’-dialkenyl-substituted derivatives [alkenyl = PhC(O)CH=CH, MeOCOCH=CH, (EtO2C)2C=C(Ph), etc.]. Arylation of diaza-18-crown-6 with nonactivated aryl bromides, such as 4-Me2NC6H4Br, 4-MeOC6H4Br, C6H5Br, and 4-CF3C6H4Br, was effected under catalysis by palladium complexes. N,N’-Diaryldiaza-18-crowns-6 having electron-acceptor substituents in the aromatic rings turned out to be incapable of forming complexes with metal cations, while their analogs containing electron-donor para-methoxy and para-dimethylamino groups gave complexes with barium perchlorate.  相似文献   

11.
Ligand exchange of cis-bis(diphenylphosphino)ethylene (dppee) with trans-(Ph3P)2Pt(CCR)2 easily generates the cis-complexes (dppee)Pt(CCR)2 in 64-95% yield. This transformation is used to convert pyridine-containing macrocycle 7 to its cis-analogue 8 and the macrocyclic bipyridine analogue 10 to the unique macrocyclic ligand 11. X-ray structural characterization of trans-complexes 5a and 5b and cis-complexes 6a and 6b are reported, as is the structure of the strained macrocycle 8.  相似文献   

12.
The systems prepared in situ by addition of two equivalents of diphosphine [1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp) and 1,4-bis(diphenylphosphino)butane (dppb)] to M2Cl2(COE)4 (M = Rh, Ir; COE = cyclooctene) showed to be efficient and regioselective precatalysts for the hydrogenation of quinoline, isoquinoline, 5,6- and 7,8-benzoquinoline and acridine, under mild reaction conditions (130°C and 4 atm H2). The Rh systems showed to be more active than the corresponding Ir ones, except for the case of acridine, where an inversed tendency was observed (Ir > Rh).  相似文献   

13.
13C NMR chemical shifts were measured in CDCl3 for two series of substituted benzylidene anilines. The substituted benzylidene anilines p-X-C6H4CH=NC6H4-p-CN p-X-C6H4CH=NC6H4-o-CN (X = NO2, F, Cl, Br, H, Me, MeO, NMe2). The substituent dependence of δC(C=N) was used as a tool to study electronic substituent effects on the azomethine unit. The benzylidene substituents X have a reverse effect on δC(C=N): electron-withdrawing substituents cause shielding, while electrondonating ones do the reverse, the resonance effects clearly predominating over the inductive effects. Additionally, the presence of a specific cross-interaction between X and C=N could be verified. The electronic effects of the neighboring aromatic ring substituents systematically modify the sensitivity of the C=N group to the electronic effects of the benzylidene substituents. These results can be rationalized in terms of the substituent-sensitive balance of the electron delocalization (mesomeric effects).  相似文献   

14.
The compounds [Ru3(CO)9(μ,η2-SCCR)(μ32-CCR)] (R=SiMe3, R=SiiPr3 (1); R=SiiPr3, R=SiMe3 (2); R=SiiPr3, R=H (3); R=H, R=SiiPr3 (4)) have been obtained by cleavage of one S-C bond of the thioethers iPr3SiCCSCCR (R=H, SiMe3) in the presence of Ru3(CO)12. Thermal treatment of [Ru3(CO)9(μ,η2-SCCSiiPr3)(μ32-CCH)] yields to the cluster [Ru4(CO)9(μ-CO)24-S)(μ42-C(H)C)(CCSiiPr3)] (5) which contains a bridging sulfur atom and a polycarbon chain as a consequence of the rupture of the S-C bond and a C-C coupling reaction. All derivatives have been characterized by spectroscopic data. An X-ray diffraction study was carried out on the species [Ru3(CO)9(μ,η2-SCCSiiPr3)(μ32-CCSiMe3)] and of [Ru3(CO)9(μ,η2-SCCSiiPr3)(μ32-CCH)].  相似文献   

15.
The reactions of 1,2-bis(tetrazol-5-yl)benzene (1), 1,3-bis(tetrazol-5-yl)benzene (2), 1,4-bis(tetrazol-5-yl)benzene (3), 1,2-(Bu3SnN4C)2C6H4 (4), 1,3-(Bu3SnN4C)2C6H4 (5) and 1,4-(Bu3SnN4C)2C6H4 (6) with 1,2-dibromoethane were carried out by two different methods in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazoles. This lead to the formation of several alkyl halide derivatives, substituted at either N1 or N2 on the tetrazole ring, as well as the surprising formation of several vinyl derivatives. The crystal structures of both 1,2-[(2-vinyl)tetrazol-5-yl)]benzene (1-N,2-N′) (1b) and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N′) (5d) are discussed.  相似文献   

16.
Summary A simple low-voltage electrochemical technique was used to obtain crystalline anionic halo-salts of cobalt. Complexes of the type [R3PH]2[CoX4] (R=n-Bu, Ph or 4-totyl; X=Cl or Br) and [H2P-P][CoX4][P-P = bis(diphenylphosphino)methane or bis(diphenylphosphino)ethane; X=Cl or Br] were synthesized by the one-step electrochemical oxidation of cobalt in an acetonitrile-hydrohalic acid solution of the neutral tertiary or ditertiary phosphine. I.r. absorption and n.m.r. spectra (1H and31P) provided diagnostic criteria for confirming the presence of the phosphonium cation rather than the ligated phosphine.  相似文献   

17.
An efficient synthetic route to 2‐ and 2,7‐substituted pyrenes is described. The regiospecific direct C? H borylation of pyrene with an iridium‐based catalyst, prepared in situ by the reaction of [{Ir(μ‐OMe)cod}2] (cod=1,5‐cyclooctadiene) with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine, gives 2,7‐bis(Bpin)pyrene ( 1 ) and 2‐(Bpin)pyrene ( 2 , pin=OCMe2CMe2O). From 1 , by simple derivatization strategies, we synthesized 2,7‐bis(R)‐pyrenes with R=BF3K ( 3 ), Br ( 4 ), OH ( 5 ), B(OH)2 ( 6 ), and OTf ( 7 ). Using these nominally nucleophilic and electrophilic derivatives as coupling partners in Suzuki–Miyaura, Sonogashira, and Buchwald–Hartwig cross‐coupling reactions, we obtained 2,7‐bis(R)‐pyrenes with R=(4‐CO2C8H17)C6H4 ( 8 ), Ph ( 9 ), C≡CPh ( 10 ), C≡C[{4‐B(Mes)2}C6H4] ( 11 ), C≡CTMS ( 12 ), C≡C[(4‐NMe2)C6H4] ( 14 ), C≡CH ( 15 ), N(Ph)[(4‐OMe)C6H4] ( 16 ), and R=OTf, R′=C≡CTMS ( 13 ). Lithiation of 4 , followed by reaction with CO2, yielded pyrene‐2,7‐dicarboxylic acid ( 17 ), whilst borylation of 2‐tBu‐pyrene gave 2‐tBu‐7‐Bpin‐pyrene ( 18 ) selectively. By similar routes (including Negishi cross‐coupling reactions), monosubstituted 2‐R‐pyrenes with R=BF3K ( 19 ), Br ( 20 ), OH ( 21 ), B(OH)2 ( 22 ), [4‐B(Mes)2]C6H4 ( 23 ), B(Mes)2 ( 24 ), OTf ( 25 ), C≡CPh ( 26 ), C≡CTMS ( 27 ), (4‐CO2Me)C6H4 ( 28 ), C≡CH ( 29 ), C3H6CO2Me ( 30 ), OC3H6CO2Me ( 31 ), C3H6CO2H ( 32 ), OC3H6CO2H ( 33 ), and O(CH2)12Br ( 34 ) were obtained from 2 . These derivatives are of synthetic and photophysical interest because they contain donor, acceptor, and conjugated substituents. The crystal structures of compounds 4 , 5 , 7 , 12 , 18 , 19 , 21 , 23 , 26 , and 28 – 31 have also been obtained from single‐crystal X‐ray diffraction data, revealing a diversity of packing modes, which are described in the Supporting Information. A detailed discussion of the structures of 1 and 2 , their polymorphs, solvates, and co‐crystals is reported separately.  相似文献   

18.
A series of aromatic ethynyl-bridged ferrocenes with the general formula Fc-CC-R-CC-Fc (Fc=ferrocenyl, R=C6H2(-p-CH3)2 (1), C6H4-p-C6H4 (2), C5H3N (3), 9,10-C14H8 (4), C4H2S (5), (C4H2S)2 (6) and (C4H2S)3 (7)) has been synthesised by the reaction of ethynyl ferrocene with the appropriate dibromo-arenes. The new complexes have been characterised by spectroscopic techniques. The structures of 3 and 7 were determined via X-ray crystallography, and both show the trans-trans configuration of the two ethynyl ferrocene groups with respect to the central R group. The electronic properties of the compounds have been studied via optical spectroscopy and cyclic voltammetry.  相似文献   

19.
The stoichiometric reduction of N-carbophenoxypyridinium tetraphenylborate (6) by CpRu(P-P)H (Cp = eta(5)-cyclopentadienyl; P-P = dppe, 1,2-bis(diphenylphosphino)ethane, or dppf, 1,1'-bis(diphenylphosphino)ferrocene), and Cp*Ru(P-P)H (Cp* = eta(5)-pentamethylcyclopentadienyl; P-P = dppe) gives mixtures of 1,2- and 1,4-dihydropyridines. The stoichiometric reduction of 6 by Cp*Ru(dppf)H (5) gives only the 1,4-dihydropyridine, and 5 catalyzes the exclusive formation of the 1,4-dihydropyridine from 6, H(2), and 2,2,6,6-tetramethylpiperidine. In the stoichiometric reductions, the ratio of 1,4 to 1,2 product increases as the Ru hydrides become better one-electron reductants, suggesting that the 1,4 product arises from a two-step (e(-)/H(*)) hydride transfer. Calculations at the UB3LYP/6-311++G(3df,3pd)//UB3LYP/6-31G* level support this hypothesis, indicating that the spin density in the N-carbophenoxypyridinium radical (13) resides primarily at C4, while the positive charge in 6 resides primarily at C2 and C6. The isomeric dihydropyridines thus result from the operation of different mechanisms: the 1,2 product from a single-step H(-) transfer and the 1,4 product from a two-step (e(-)/H(*)) transfer.  相似文献   

20.
A kinetic study is reported for the reactions of secondary aromatic amines p-YC6H4NHR (Y = MeO, Me, H; R = Me, Et) with the isocyanide complexes cis-[PdCl2(p-XC6H4NC)(PPh3)] (X = Me, H, Cl) leading to the carbene derivatives cis-[PdCl2 {C(NH-p-C6H4X)NR-p-C6H4Y} (PPh3)] in 1,2-dichloroethane at 25°C. A stepwise mechanism is proposed which involves a direct nucleophilic attack of the entering amine on the isocyanide carbon followed by proton transfers to the final carbene complexes. These take place both intramolecularly in a four-membered cyclic transition state and by the agency of one further amine molecule serving as a proton acceptor-donor in a six-membered transition state. Competition experiments with primary amines and trends in rate parameters are discussed to support the mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号