首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Poly(acrylamide) (PAM) with controlled molecular weight and tacticity was prepared by UV-irradiation-initiated controlled/living radical polymerization in the presence of dibenzyl trithiocarbonate (DBTTC) and Y(OTf)3. The rapid and facile photo-initiated controlled/living polymerization at ambient temperature led to controlled molecular weight and narrow polydispersity (Mw/Mn = 1.12-1.24) of PAM. The coordination of Y(OTf)3 with the last two amide groups in the growing chain radical effectively enhanced isotacticity of PAM. The isotactic sequence of dyads (m), triads (mm) and pentads (mmmm) in PAM were 70.32%, 50.95%, and 29.97%, respectively, which were determined by the resonance of methine (CH) groups in PAM under 13C NMR experiment. Factors affecting stereocontrol during the polymerization were studied, including the type of Lewis acids, concentration of Y(OTf)3, and monomer conversion. It is intriguing that the meso tacticity increased gradually with chain propagation and quite higher isotacticity (m = 93.01%, mm = 86.57%) was obtained in the later polymerization stage (conversion 65-85%).  相似文献   

2.
Sr4AlNbO8 was synthesized at 1500 °C in air. The crystal structure was initially determined from powder X-ray diffraction data, and later refined with combined X-ray and neutron diffraction data (P21/c; a=7.17592(2) Å, b=5.80261(2) Å, c=19.7408(1) Å; β=97.5470(1)°, V=814.869(3) Å3, Z=4, Rp/Rwp=10.04%/13.18% for X-ray data, 4.40%/5.67% for neutron data, and 7.71%/10.74% in total with χ2 of 3.76, 23 °C). The crystal structure is a new structure type and may be described as a three-dimensional polyhedral network resulting from the corner-sharing of NbO6 and Sr1O6 octahedra and AlO4 tetrahedra. Also, the other strontium atoms (Sr2, Sr3, and Sr4) occupy the larger cavities surrounded by oxygen atoms to form nine, eight, and 11 coordination, respectively. Considering that Sr, Al, and Nb atoms are crystallographically distinct in terms of interatomic distances and polyhedral coordination, Sr4AlNbO8 can be regarded as a stoichiometric compound.  相似文献   

3.
An improved reagent named 2-[2-(dibenzocarbazole)-ethoxy] ethyl chloroformate (DBCEC-Cl) for the determination of aliphatic amines by high-performance liquid chromatography (HPLC) with fluorescence detection and post-column online atmospheric chemical ionization-mass spectrometry (APCI-MS) identification has been developed. DBCEC-Cl could easily and quickly label aliphatic amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+H]+ under APCI-MS in positive-ion mode. The ratios for fluorescence responses were IDBCEC-amine/IBCEC-amine = 1.02-1.60; IDBCEC-amine/IBCEOC-amine = 1.30-2.57; and IDBCEC-amine/IFMOC-amine = 2.20-4.12 (here, I was relative fluorescence intensity). The ratios for MS responses were ICDBCEC-amine/ICBCEC-amine = 4.16-29.31 and ICDBCEC-amine/ICBCEOC-amine = 1.23-2.47 (Here, IC: APCI-MS ion current intensity). Detection limits calculated from 0.0244 pmol injection, at a signal-to-noise ratio of 3, were 0.3-3.0 fmol. The relative standard deviations for within-day determination (n = 6) were 0.045-0.081% for retention time and 0.86-1.03% for peak area for the tested aliphatic amines. The mean intra- and inter-assay precision for all amine levels were <3.64% and 4.67%, respectively. The mean recoveries ranged from 96.9% to 104.7% with their standard deviations in the range of 1.80-2.70 (RSDs%). Excellent linear responses were observed with coefficients of >0.9991.  相似文献   

4.
Two hydrated uranyl arsenates and a uranyl phosphate were synthesized by hydrothermal methods in the presence of amine structure-directing agents and their structures determined: (N2C6H14)[(UO2)(AsO4)]2(H2O)3, DabcoUAs, {NH(C2H5)3}[(UO2)2(AsO4)(AsO3OH)], TriethUAs, and (N2C4H12)(UO2)[(UO2)(PO4)]4(H2O)2, PiperUP. Intensity data were collected at room temperature using MoKα X-radiation and a CCD-based area detector. The crystal structures were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (DabcoUAs, TriethUAs, PiperUP) wR2=5.6%, 8.3%, 7.2% for all data, and R1=2.9%, 3.3%, 4.0%, calculated for 1777, 5822, 9119 unique observed reflections (|Fo|?4σF), respectively. DabcoUAs is monoclinic, space group C2/m, Z=2, a=18.581(1), b=7.1897(4), c=7.1909(4) Å, β=102.886(1)°, V=936.43(9) Å3, Dcalc=3.50 g/cm3. TriethUAs is monoclinic, space group P21/n, Z=4, a=9.6359(4), b=18.4678(7), c=10.0708(4) Å, β=92.282(1)°, V=1790.7(1) Å3, Dcalc=3.41 g/cm3. PiperUP is monoclinic, space group Pn, Z=2, a=9.3278(4), b=15.5529(7), c=9.6474(5) Å, β=93.266(1)°, V=1397.3(1) Å3, Dcalc=4.41 g/cm3. The structure of DabcoUAs contains the autunite-type sheet formed by the sharing of vertices between uranyl square bipyramids and arsenate tetrahedra. The triethylenediammonium cations are located in the interlayer along with two H2O groups and are disordered. Both TriethUAs and PiperUP contain sheets formed of uranyl pentagonal bipyramids and tetrahedra (arsenate and phosphate, respectively) with the uranophane sheet-anion topology. In TriethUAs, triethlyammonium cations are located in the interlayer. In PiperUP, the sheets are connected by a uranyl pentagonal bipyramid that shares corners with phosphate tetrahedra of adjacent sheets, resulting in a framework with piperazinium cations and H2O groups in the cavities of the structure.  相似文献   

5.
EuCu2SnS4 was prepared by a stoichiometric combination of the elements heated to 700 °C for 125 h. The structure was determined by single crystal X-ray diffraction methods. The compound crystallizes in the noncentrosymmetric, orthorhombic space group Ama2 with a=10.4793(1) Å, b=10.3610(2) Å, c=6.4015(1) Å, Z=4, R1=0.99% and wR2=2.37%. The structure type is that of SrCu2GeSe4. The structure can be described as a three-dimensional network built from near perfect SnS4 and distorted CuS4 tetrahedra together with EuS8 square antiprisms. The dark red compound is a semiconductor with an optical bandgap of 1.85 eV.  相似文献   

6.
A new aluminum oxycarbonitride, Al5(OxCyN4−xy) (x∼1.4 and y∼2.1), has been synthesized and characterized by X-ray powder diffraction, transmission electron microscopy and electron energy loss spectroscopy (EELS). The title compound was found to be hexagonal with space group P63/mmc, Z=2, and unit-cell dimensions a=0.328455(6) nm, c=2.15998(3) nm and V=0.201805(6) nm3. The atom ratios O:C:N were determined by EELS. The final structural model, which is isomorphous with that of (Al4.4Si0.6)(O1.0C3.0), showed the positional disordering of one of the three types of Al sites. The maximum-entropy method-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The reliability indices calculated from the MPF were Rwp=6.94% (S=1.22), Rp=5.34%, RB=1.35% and RF=0.76%. The crystal was an inversion twin. Each twin-related individual was isostructural with Al5C3N (space group P63mc, Z=2).  相似文献   

7.
The effects of drawing temperature (Td) and draw strain on the orientation and structure of semicrystalline poly(lactic acid) (PLA) films were investigated by wide angle X-ray diffraction and polarized Fourier transform infrared spectroscopy. Semicrystalline PLA samples with two initial levels of crystallinity, Xc = 1% and 11%, were prepared by cold crystallization at 80 °C. Whatever Xc and Td, the total amount of the ordered phases (i.e. crystalline + mesophase) increased with draw strain, which could be ascribed to the formation of strain-induced mesophase at Td = 60 or 70 °C but crystalline at 80 °C. Also, the molecular orientation of both the amorphous and ordered phases increased with draw strain. Whatever Xc, the orientation of the ordered phases was insensitive to Td, whereas higher orientation in the amorphous phase was achieved at lower Td, and the trend was more significant for Xc = 1% compared with 11%.  相似文献   

8.
We have prepared a new layered oxycarbide, [Al5.25(5)Si0.75(5)][O1.60(7)C3.40(7)], by isothermal heating of (Al4.4Si0.6)(O1.0C3.0) at 2273 K near the carbon-carbon monoxide buffer. The crystal structure was characterized using X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX). The title compound is trigonal with space group R3?m (centrosymmetric), Z=3, and hexagonal cell dimensions a=0.32464(2) nm, c=4.00527(14) nm and V=0.36556(3) nm3. The atom ratios Al:Si were determined by EDX, and the initial structural model was derived by the direct methods. The final structural model showed the positional disordering of one of the three types of Al/Si sites. The reliability indices were Rwp=4.45% (S=1.30), Rp=3.48%, RB=2.27% and RF=1.25%. The crystal is composed of three types of domains with nearly the same fraction, one of which has the crystal structure of space group Rm. The crystal structure of the remaining two domains, which are related by pseudo-symmetry inversion, is noncentrosymmetric with space group R3m.  相似文献   

9.
Large single crystals of ZrAsxSey (x>y, x+y≤2, PbFCl type of structure, space group P4/nmm) were grown by Chemical Transport. Structural details were studied by single crystal neutron diffraction techniques at various temperatures. One single crystal specimen with chemical composition ZrAs1.595(3)Se0.393(1) was studied at ambient temperature (R1=5.10 %, wR2=13.18 %), and a second crystal with composition ZrAs1.420(3)Se0.560(1) was investigated at 25 K (R1=2.70%, wR2=5.70 %) and 2.3 K (R1=2.30 %, wR2=4.70 %), respectively. The chemical compositions of the crystals under investigation were determined by wavelength dispersive X-ray spectroscopy. The quantification of trace elements was carried out by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. According to the crystal structure refinements the crystallographic 2a site is occupied by As, together with a significant amount of vacancies. One of the 2c sites is fully occupied by As and Se (random distribution). With respect to the fractional coordinates of the atoms, the crystal structure determinations based on the data obtained at 25.0 K and 2.3 K did not show significant deviations from ambient temperature results. The temperature dependence of the displacement parameters indicates a static displacement of As on the 2a sites (located on the (0 0 1) planes) for all temperatures. No indications for any occupation of interstitial sites or the presence of vacancies on the Zr (2a) site were found.  相似文献   

10.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

11.
A new quaternary layered carbide, Zr2[Al3.56Si0.44]C5, has been synthesized and characterized by X-ray powder diffraction, transmission electron microscopy and thermopower and electrical conductivity measurements. The crystal structure was successfully determined using direct methods, and further refined by the Rietveld method. The crystal is trigonal (space group R3m, Z=3) with lattice dimensions of a=0.331059(5), c=4.09450(5) nm and V=0.38864(1) nm3. The final reliability indices calculated from the Rietveld refinement were Rwp=6.24%, Rp=4.21% and RB=0.82%. The crystal structure is composed of electroconductive NaCl-type ZrC slabs separated by Al4C3-type [Al3.56Si0.44]C3 layers. This material had thermoelectric properties superior to those of the ternary layered carbides Zr2Al3C4 and Zr3Al3C5, with the power factor reaching 7.6×10−5W m−1 K−2.  相似文献   

12.
Two new Nax[Cr(1+x)/2Sb(1−x)/2]O2 compounds have been prepared by solid-state reactions in argon. Their structures have been determined by the X-ray Rietveld method. Both new phases together with NaCrO2-based solid solution comprise brucite-like layers of edge-shared (Cr,Sb)O6 octahedra but differ by packing mode of the layers and coordination of the interlayer Na+ ions. A P3 phase exists at x≈0.5-0.58. It is rhombohedral (R3?m), a=2.966, c=16.937 Å at x≈0.58, with 29% Na+ occupancy of trigonal prisms. A P2 phase exists at x≈0.6-0.7. It is hexagonal (P63/mmc), a=2.960, c=11.190 Å at x≈0.7, with 37% and 33% Na+ occupancy of two non-equivalent trigonal prisms. Both P2 and P3 phases rapidly absorb moisture in air; packing mode is preserved, the a parameter changes slightly but c increases by 24-25%. Very high sodium ion conductivity is predicted for both P2 and P3 anhydrous phases.  相似文献   

13.
Single crystals of Li0.68CoO2, Li0.48CoO2, and Li0.35CoO2 were successfully synthesized for the first time by means of electrochemical and chemical delithiation processes using LiCoO2 single crystals as a parent compound. A single-crystal X-ray diffraction study confirmed the trigonal R3¯m space group and the hexagonal lattice parameters a=2.8107(5) Å, c=14.2235(6) Å, and c/a=5.060 for Li0.68CoO2; a=2.8090(15) Å, c=14.3890(17) Å, and c/a=5.122 for Li0.48CoO2; and a=2.8070(12) Å, c=14.4359(14) Å, and c/a=5.143 for Li0.35CoO2. The crystal structures were refined to the conventional values R=1.99% and wR=1.88% for Li0.68CoO2; R=2.40% and wR=2.58% for Li0.48CoO2; and R=2.63% and wR=2.56% for Li0.35CoO2. The oxygen-oxygen contact distance in the CoO6 octahedron was determined to be shortened by the delithiation from 2.6180(9) Å in LiCoO2 to 2.5385(15) Å in Li0.35CoO2. The electron density distributions of these LixCoO2 crystals were analyzed by the maximum entropy method (MEM) using the present single-crystal X-ray diffraction data at 300 K. From the results of the single-crystal MEM, strong covalent bonding was clearly visible between the Co and O atoms, while no bonding was found around the Li atoms in these compounds. The gradual decrease in the electron density at the Li site upon delithiation could be precisely analyzed.  相似文献   

14.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

15.
The crystal structure of Na3DySi6O15 has been solved and refined to an R1=2.97% (wR2=8.25%) for 1311 independent reflections. The compound was found to crystallize within the orthorhombic system with the space group Cmca (Z=8) and the lattice parameters: a=14.590(7) Å, b=17.813(4) Å, c=10.519(2) Å, V=2734.0 Å3, Dcal=3.11 g/cm3. The structure of Na3DySi6O15 is a filled variant of the zektzerite with S like corrugated double chains of [SiO4] tetrahedral, connected via Na+ and Dy3+ cations and running parallel to c-axis. The three-dimensional network results from the packing of these chains along [100] by skewering them in rods represented by the tunnels delimited by the S shape of the silicate chains. One of the main peculiar features of the Na3DySi6O15 structure is the location of Na+ in tetrahedral sites with rather short Na-O bond lengths (2×2.243 and 2×2.262 Å).  相似文献   

16.
The crystal structure of SrAl2O4 at 1073 K was determined from conventional X-ray powder diffraction data using direct methods, and it was further refined by the Rietveld method. The structure was hexagonal (space group P63, Z=6) with a=0.89260(3) nm, c=0.84985(2) nm and V=0.58639(3) nm3. Final reliability indices were Rwp=7.87%, Rp=5.87% and RB=4.19%. The [AlO4] tetrahedra are linked to form trigonally distorted rings and they are joined in layers. These layers are stacked with a two-layer repeat and connected by the tetrahedral apices. All of the Sr atoms occupy the centers of the rings when viewed along the c-axis. The structure is described as a stuffed derivative of tridymite.  相似文献   

17.
Poly(dimethylsiloxane) (PDMS)-HTiNbO5 nanocomposite membranes with various HTiNbO5 nanofiller content were prepared by melt intercalation. WAXS diffraction measurements and TEM observations have suggested that the HTiNbO5 mineral was exfoliated in the PDMS matrix. The influence of the filler in the membrane was evaluated by water diffusion, gas permeation (CO2, N2, O2, ethane and ethylene), toluene pervaporation and by CO2 sorption measurements.A filler content of only 2 wt.% in PDMS-HTiNbO5 nanocomposite membranes slows down the water diffusion significantly, and a filler content of 5 wt.% reduces also the permeability of the films for toluene. The addition of a filler content up to 10 wt.% do not significantly influences the gas permeability (P) except for CO2. The PDMS matrix appears to be highly permeable and, therefore, a decreasing effect on P is only marked for a very high HTiNbO5 content. This effect is more pronounced for CO2, the P value of which decreases by 80% when the amount of nanofiller is 40 wt.%. The sorption measurements show that the interaction between CO2 and PDMS is weak (isotherms agree with Henry’s law). The filler decreases the solubility of CO2 in the films (S = 7.94 × 10−3 and S = 5.44 × 10−3 cm3 STPcm−3 film cmHg−1 for PDMS and PDMS-HTiNbO5 40 wt.%, respectively).  相似文献   

18.
The thermal evolution and structural properties of fluorite-related δ-Bi2O3-type Bi9ReO17 were studied with variable temperature neutron powder diffraction, synchrotron X-ray powder diffraction and electron diffraction. The thermodynamically stable room-temperature crystal structure is monoclinic P21/c, a=9.89917(5), b=19.70356(10), c=11.61597(6) Å, β=125.302(2)° (Rp=3.51%, wRp=3.60%) and features clusters of ReO4 tetrahedra embedded in a distorted Bi-O fluorite-like network. This phase is stable up to 725 °C whereupon it transforms to a disordered δ-Bi2O3-like phase, which was modeled with δ-Bi2O3 in cubic Fmm with a=5.7809(1) Å (Rp=2.49%, wRp=2.44%) at 750 °C. Quenching from above 725 °C leads to a different phase, the structure of which has not been solved but appears on the basis of spectroscopic evidence to contain both ReO4 tetrahedra and ReO6 octahedra.  相似文献   

19.
《Solid State Sciences》2012,14(10):1399-1404
New oxonickelates(I), Rb3NiO2 and Cs3NiO2, were prepared via the azide/nitrate route, starting from stoichiometric mixtures of azides, nitrates and NiO as precursors. The mixtures were heated steadily in a controlled heating regime up to 723 K and annealed at this temperature for 50 h (30 h for cesium compound) in specially designed containers with silver inlays. The crystal structures of Rb3NiO2 and Cs3NiO2 were solved and refined by X-ray powder methods. Room temperature α-Rb3NiO2 (P41212, Z = 4, a = 6.2651(2) Å, b = 14.7438(3) Å; Rwp = 6.30%) and high temperature β-Rb3NiO2 (at 523 K P42/mnm, Z = 2, a = 6.2750(2) Å, b = 7.5088(3) Å; Rwp = 7.85%) were found to be isostructural to room and high temperature α- and β-K3NiO2, respectively. Cs3NiO2 crystallizes at room temperature isostructural with the β-K3NiO2 (P42/mnm, Z = 2, a = 6.4336(3) Å, b = 8.0844(4) Å; Rwp = 5.21%). A3NiO2 (A = K, Rb, Cs) are paramagnetic in the whole temperature range investigated. The magnetic susceptibility data have been evaluated by the Curie–Weiss law, where the calculated magnetic moments are as expected for a d9 system (μ = 1.73–2.20μB). Negative values of Weiss constants are indicative for antiferromagnetic interactions in this family of compounds.  相似文献   

20.
A complete series of solid solutions was prepared in the SrZr(PO4)2-BaZr(PO4)2 system and examined by conventional X-ray powder diffraction (XRPD). The crystals of SrxBa1−xZr(PO4)2 with x?0.1 were isomorphous with yavapaiite (KFe(SO4)2, space group C2/m). The solid solution with 0.2?x?0.7 has been composed of a new phase, showing a superstructure along the a-axis (c-axis of the yavapaiite substructure). The crystals with 0.8?x?0.9 were composed of both the new phase and the triclinic phase, the latter being isostructural with SrZr(PO4)2 (x=1). The crystal structure of the new phase has been determined using direct methods, and it has been further refined by the Rietveld method. The crystal of Sr0.7Ba0.3Zr(PO4)2 (x=0.7) is monoclinic (space group P2/c, Z=4 and Dx/Mg m−3=3.73) with a=1.53370(8) nm, b=0.52991(3) nm, c=0.84132(4) nm, β=92.278(1)° and V=0.68321(6) nm3. Final reliability indices are Rwp=7.32%, Rp=5.60% and RB=3.22%. The powder specimen was also examined by high-temperature XRPD and differential thermal analysis (DTA) to reveal the occurrence of two phase transitions during heating; the space group changed from P2/c to C2/m at ∼400 K, followed by the monoclinic-to-hexagonal (or trigonal) transition at 1060 K. The P2/c-to-C2/m transition has been, for the first time, described in the yavapaiite-type compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号