首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A silicon oxide thin film barrier was prepared with various oxygen contents and its chemical composition, surface morphology and optical and barrier properties were related to the deposition conditions used. Our study showed that under Ar and O2 assisted process conditions, a stoichiometric silicon oxide thin film formed at a critical oxygen content during deposition of 40-50%. The thin films deposited at the critical condition showed the lowest surface roughness giving similar or higher optical transmittance than that of the bare polycarbonate (PC) substrate. The boiling and tensile strength test performed on the thin film deposited with assisted ions before the deposition process showed improvement in the adhesion between the oxide layer and the polymer substrate. In addition, interface modification to improve for improving the barrier layer properties of the silicon oxide thin film was achieved through the introduction of dual ion beam sputtering without pre-treatment.  相似文献   

2.
桂全宏  佘星欣 《人工晶体学报》2012,41(3):599-604,610
采用等离子体增强化学气相沉积(PECVD)法分别在玻璃衬底和p型薄膜硅衬底上制备了微晶硅薄膜。使用拉曼谱仪、紫外-可见分光光度计、傅里叶红外光谱仪等对微晶硅薄膜进行检测,重点研究了硅烷浓度、衬底温度对薄膜沉积速率和晶化率的影响。实验结果表明:两种衬底上薄膜的沉积速率均随硅烷浓度的增大、衬底温度的升高而变大。硅烷浓度对两种衬底的薄膜晶化率影响规律相同,即均随其升高而降低;但两种衬底的衬底温度影响规律存在差别:对玻璃衬底而言,温度升高,样品晶化率减小;而p型薄膜硅衬底则在温度升高时,样品晶化率先增大后减小。此外还发现,晶化率与薄膜光学性能及含氧量存在较密切关联。  相似文献   

3.
The fabrication of light trapping architectures for electron beam (e-beam) evaporated polycrystalline Si thin film solar cells is investigated based on tailored self-organized light scattering silica nanospheres and 2 dimensional periodic nanoimprinted structures on glass. A microscopic analysis reveals a unique correlation between the microstructure of high-rate e-beam evaporated Si and the substrate topography. These features provide the basis for the design of nanostructured Si that complies with its distinctive growth characteristics. A layer of self-organized nanospheres embedded in a sol–gel matrix and an anti-reflection coating is found to be an e-beam compatible light trapping approach for poly-Si solar cells, contributing to an increase of 50% in current collection. We developed a preparation process for arrays of equidistant free-standing Si crystals with remarkable optical absorption characteristics based on a nanoimprinted glass substrate by selectively etching e-beam evaporated Si. This periodic approach opens design possibilities for effective three-dimensional architectures for advanced photon management.  相似文献   

4.
铌酸锂晶体集电光、声光和非线性光学等物理特性于一身,且透光范围宽,作为一种重要的光学材料被广泛应用于通信、传感等领域.通过离子注入与直接键合的方式制备出的铌酸锂单晶薄膜材料,保留了铌酸锂体材料的优秀物理特性,并且具有高折射率对比度的优点,使光子器件在集成度和性能上都得到了很大程度的提升.本文介绍了铌酸锂薄膜的制备及应用...  相似文献   

5.
本文研究制备了可应用于高功率CO2激光器的CVD金刚石窗口.首先使用环形天线-椭球谐振腔式MPCVD装置沉积制备直径2英寸(1英寸=2.54 cm)金刚石自支撑膜,然后将膜片双面抛光,激光切割成矩形基片,再采用蒸镀法在基片表面制备中心波长在10.6μm的增透膜,最终制备得到金刚石光学窗口.采用傅里叶红外透射谱、热导仪、...  相似文献   

6.
采用低压金属有机化学气相沉积(LPMOCVD)法,成功地在(0001)晶向的蓝宝石(Al2O3)衬底上制备了高质量的GaN薄膜.并利用X射线衍射(XRD)谱和椭圆偏振光谱(SE)对其结构和光学特性作了表征.XRD谱中,在34.5°和72.9°附近出现了两个尖锐的衍射峰,分析表明这两个衍射峰分别对应纤锌矿(Wurtzite) 结构GaN薄膜的(0002)和(0004)晶向.其中GaN (0002)晶向衍射峰的半高宽(FWHM)很窄,只有0.1°左右,并且GaN(0004)晶向衍射峰强度很强,二者均证实了采用LPMOCVD法制备的GaN薄膜具有高的质量.在介电函数和反射谱中,GaN高的透明性(<3.44eV)诱导了强的干涉振荡.室温下拟合出的表征带间跃迁的光学带隙约为3.44eV.  相似文献   

7.
The structural and electrical properties of silicon layers epitaxially grown on metallurgical-grade polycrystalline silicon substrates are examined to clarify the effect of grain boundaries, crystal defects and impurities in the substrates. Chemical etching of the epitaxial layer reveals that all the grain boundaries continue from the substrate into the epitaxial layer, whereas lines of high density etch pits do not always continue. The polycrystalline thin film solar cells are fabricated on the metallurgical-grade silicon substrates by successive deposition of p and n+ layers. These cells show short circuit current densities around 70% of that of the conventional single crystal cell. This reduction of the short circuit current is caused mainly by the short minority carrier diffusion length in the grains probably due to impurities involved in the epitaxial layers. The origins of such impurities are discussed by considering autodoping and solid-state diffusion from the substrate during growth of epitaxial layers.  相似文献   

8.
无镉材料Zn(O,S)因其带隙宽且可调节、无毒无害等优点被作为缓冲层材料重点研究,通过化学水浴法制备Zn(O,S)薄膜,研究了沉积时间的不同(20~35 min)对Zn(O,S)薄膜的成分、结构特性、光学性能及形貌的影响.通过XRD测试可知,水浴法制备的Zn(O,S)薄膜为非晶态.通过透反射谱测试可知,薄膜的光学透过率较高(>80;).通过表面形貌测试可知,30 min时Zn(O,S)薄膜为致密均匀的小颗粒.将Zn(O,S)薄膜应用在CZTSe电池中,在30 min时获得较高器件转换效率5.37;.  相似文献   

9.
《Journal of Non》2006,352(9-20):984-988
We propose a new approach to growing photovoltaic-quality crystal silicon films on glass. Other approaches to film Si focus on increasing grain size in order to reduce the deleterious effects of grain boundaries. Instead, we propose aligning the silicon grains biaxially (both in and out of plane) so that (1) grain boundaries are ‘low-angle’ and have less effect on the electronic properties of the material and (2) subsequent epitaxial thickening is simplified. They key to our approach is the use of a foreign template layer that can be grown with biaxial texture directly on glass by a technique such as ion-beam-assisted deposition or inclined substrate deposition. After deposition of the template layer, silicon is then grown aligned to the template and subsequently thickened. Here, we outline this new approach to silicon on glass, describe initial experimental results and discuss challenges that must be overcome.  相似文献   

10.
《Journal of Non》2006,352(23-25):2457-2460
The surface of nanostructured silicon (porous silicon) was biofunctionalized by the deposition of 3-aminopropyltriethoxysilane from solution, leading to high density of amine groups covering the surface which would promote the further immobilization of biomolecules. In addition, porous silicon Bragg reflectors were developed for their use in the visible range. The optical behavior of these structures was previously designed by the use of a computational program, from which the optical constants and thickness of the individual porous silicon layers were determined. The possibility of using these structures as biosensors has been explored, based on the significant changes in the reflectance spectra before and after exposing the porous silicon optical structures to biomolecules. In particular, it is shown that there is a notable shift of the reflectance maximum associated to the Bragg reflector after immobilization of polyclonal mouse antibodies. Thus, the experimental results open the possibility of developing biosensors based on the variation of the position of the optical spectrum of porous silicon based devices.  相似文献   

11.
We report on the development and application of n-type hydrogenated microcrystalline silicon oxide (μc-SiOx:H) alloys in single and tandem junction thin film silicon solar cells. Single junction microcrystalline silicon (μc-Si:H) solar cells are prepared in n-i-p deposition sequence where n-type μc-SiOx:H films serve as window layers. In tandem solar cells, μc-SiOx:H layers are placed between amorphous (a-Si:H) and μc-Si:H component cells, serving as an intermediate reflector. The requirements for μc-SiOx:H layer depending on its application are discussed. Our results show that the optical, electrical and structural properties of μc-SiOx:H can be conveniently tuned over a wide range to fulfil various requirements for applications in both types of cells. Additionally, the properties of μc-SiOx:H layers appear to be substrate dependent, which should be taken into account when layers are utilized in cells. The advantages of low refractive index and high optical band gap allow to achieve high efficiencies of 9.2% and 12.6% for single junction and tandem solar cells, respectively.  相似文献   

12.
In order to examine the possibility for TiN coatings to be low-E, TiN coatings were deposited on the glass substrates by atmospheric pressure chemical vapor deposition using titanium tetrachloride (TiCl4) and ammonia (NH3) as precursors. X-ray diffraction, sheet resistance measurement, optical transmittance spectroscopy and infrared reflectance spectroscopy were carried out to determine the relationships between the preparation parameters and the microstructure, electrical and optical properties of the coatings. The results showed that the concentration of crystals increased with increasing the substrate temperature and the flow of TiCl4, resulting in a decrease of the electrical resistivity. The optical transmittance of TiN thin films was strongly dependent on the gas flow and the substrate temperature. Under optimum conditions, continuous polycrystalline TiN coatings with FCC structure were obtained with an electrical conductivity around 34.5 Ω/□, an optical transmittance around 50% in the visible range, and an infrared reflectance higher than 50% above 3000 nm. This indicates that TiN coated glasses may be possible candidates for high IR reflectance windows.  相似文献   

13.
High quality nanocrystalline silicon (nc-Si) film was deposited by inductively coupled plasma chemical vapor deposition (ICP-CVD) without substrate RF bias at 350 °C. The nc-Si with a dense crystalline structure of the columnar type grew from the bottom to the top of the nc-Si film. A troublesome incubation layer did not exist at the bottom of the fabricated nc-Si film. A grain size of 40 nm was measured by using a SEM image. When a RF bias of 100 and 200 W was applied to the substrate to induce ion bombardment on the substrate, the crystalline structure and grains were not observed and a-Si deposition became dominant. The transition from nc-Si deposition into a-Si deposition can be attributed to ion bombardment which prevents nucleation and crystal growth at the surface of deposition. This shows that the reduction of ion bombardment can be a key factor to fabricate high quality nc-Si film. By using ICP-CVD with no substrate RF bias, ion bombardment can be reduced, while the density of plasma is kept high, so that high quality nc-Si can be fabricated due to the enhancement of crystalline growth on the surface.  相似文献   

14.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

15.
The crystal growth of 3C-SiC onto silicon substrate by Vapor–Liquid–Solid (VLS) transport, where a SiGe liquid phase is fed with propane, has been investigated. Three sample configurations were used. In a preliminary approach, the VLS growth of SiC was conducted directly onto Si substrate using a Ge film as liquid catalyst. It led to the growth of a thick continuous SiC polycrystalline layer which was floating over a SiGe alloy located between the silicon substrate and the topping SiC layer. In the second configuration, a thin seeding layer of 3C-SiC grown by chemical vapor deposition (CVD) was used and the VLS growth was localized using a SiO2 mask. The liquid phase was a CVD deposited SiGe alloy. The growth of a few hundred nanometers thick 3C-SiC epitaxial layer was demonstrated but the process was apparently affected by the presence of the oxide which was dramatically etched at the end. In the last configuration, the silicon substrate was patterned down to 10 μm and a thin seeding layer of 3C-SiC was grown by CVD onto this patterned substrate. The liquid phase was again a CVD deposited SiGe alloy. In this last configuration, the presence of epitaxial SiC was evidenced but it grew as trapezoidal islands instead of an uniform layer.  相似文献   

16.
白安琪  郭逦达  汤洋 《人工晶体学报》2017,46(10):1941-1945
利用电化学沉积法在铜铟镓硒薄膜太阳能电池表面沉积一层ZnO纳米结构阵列减反射层.通过对沉积电位的操控,实现了对该纳米结构减反射层形貌、光学质量、反射率等特性的优化.在电池表面蒸镀电极后测试电池的电流电压曲线可知,相比于没有减反层的电池,沉积了纳米结构减反射层的电池利用氧化锌纳米结构的亚波长尺寸形成的蛾眼效应有效降低了表面光反射,增加光吸收,从而实现短路电流增加6.2;,电池效率提高了9.9;.  相似文献   

17.
以正丙醇锆和正硅酸乙酯分别为锆源和硅源,结合非水解溶胶-凝胶法和提拉镀膜工艺制备出硅酸锆(ZrSiO4)薄膜.采用XRD、FTIR、SEM、AFM等分析测试手段研究了前驱体浓度、提拉速度对ZrSiO4合成、ZrSiO4薄膜形貌及显微结构的影响,并研究薄膜的抗碱液腐蚀性能.结果表明:当前驱体浓度为0.1 mol/L、提拉速度为1 mm/s时可以在单晶硅片获得表面光滑、平整致密、无开裂的ZrSiO4薄膜.镀有ZrSiO4薄膜的单晶硅片在浓度为40;NaOH溶液中40℃条件下浸泡42 h,表面只发现有较小的坑蚀,且质量随腐蚀时间延长变化很小,质量损失仅为0.17;,表明该ZrSiO4薄膜具有较好的抗碱液腐蚀性能.  相似文献   

18.
A well known technique to obtain homogeneous alignment of nematic liquid crystals with positive dielectric anisotropy for use in twisted nematic displays is to deposit a silicon monoxide film onto the aligning substrate surface at an oblique angle between 3–6°. This range of deposition angles provides excellent normal contrast ratio but is poor when viewed off axis. This paper describes an alternative approach utilizing a double SiO deposition that improves off axis viewing. The first SiO layer (350 Å) was deposited at 6°. The second layer (20–50 Å) was deposited at 30°. The second layer seems to have a smoothing effect on the 6° structure, as substantiated by TEM studies, thus lowering the tilt angle.  相似文献   

19.
采用无电镀沉积技术在经过机械抛光的单晶硅衬底上沉积了铜纳米晶.利用X射线衍射数据,估算出所沉积铜纳米晶的平均粒径大约为40nm.对120s无电镀沉积样品的场发射测试表明,该样品的开启场强为~5.5V/μm,在场强达到9.26V/μm时的场发射电流密度可达到62.5μA/cm2.对相应的沉积过程和场发射机理进行了分析.结果表明,无电镀沉积技术有可能成为制备具有较好场发射性能的金属/硅冷阴极的一种可供选择的方法.  相似文献   

20.
Good homogeneous and stoichiometric ZnO nanofiber thin films have been deposited onto cleaned glass substrate by a simple spray pyrolysis technique under atmospheric pressure using zinc acetate precursor at temperature 200 °C. Films of various thicknesses have been obtained by varying the deposition time, while all other deposition parameters such as spray rate, carrier gas pressure and distance between spray nozzle to substrate were kept constant. Surface morphology and optical properties of the as deposited thin films have been studied by Scanning Electron Microscopy (SEM) attached with an EDX and UV visible spectroscopy. From EDX data, atomic weight% of Zinc and Oxygen were found to be 49.22% and 49.62% respectively. The SEM micrograph of the film shows uniform deposition and scattered nano fiber around the nucleation centers. The optical band gap of the ZnO thin films was found to be in the range 3.3 to 3.4 eV and the band gap decreases with thickness of the film. Optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielelectric constants were evaluated from reflectance and absorbance spectra. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号