首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we show that cyclic trimetric perfluoro-o-phenylenemercury (o-C6F4Hg)3 is capable of forming complexes with [PPh4]+Br, [PPh3Me]+I and [PPh4]+Cl of the composition [(o-C6F4Hg)3X] [PR3R′]+ (X = Br, R = R′ = Ph; X = I, R = Ph, R′ = Me) or {[(o-C6F4Hg)3X2}2−[PR3R′]+2 (X = Cl, R = R′ = Ph). An X-ray study of the complex with [PPh4]+Br revealed that it has the unusual structure of the polydecker bent sandwich wherein each Br anion is coordinated with six mercury atoms of two neighbouring molecules of (o-C6F4Hg)3.  相似文献   

2.
Cyclic trimeric perfluoro-o-phenylenemercury (o-C6F4Hg)3 (1) is capable of reacting with ethanol to form a 1:1 complex, {[(o-C6F4Hg)3](EtOH)} (2), having a pyramidal structure. The ethanol molecule in 2 is coordinated through the oxygen atom to all Hg atoms of the macrocycle. The interaction of 1 with THF followed by drying of the product obtained in vacuum also gives the corresponding pyramidal 1:1 complex {[(o-C6F4Hg)3](THF)} (3). However, when a THF solution of 1 is slowly concentrated to a small volume and the resulting crystals are not dried, three cocrystallized adducts, viz., {[(o-C6F4Hg)3](THF)2} (4), {[(o-C6F4Hg)3](THF)3} (5) and {[(o-C6F4Hg)3](THF)4} (6), containing two, three and even four THF molecules, respectively, are produced. Complex 4 has a bipyramidal structure. Complexes 5 and 6 are also characterized by the presence of a bipyramidal fragment formed by two coordinated THF species. The topological analysis of the DFT-calculated function of the electron density distribution in the crystals of 2 and 3 revealed the critical points (3, −1) on each of the three Hg···O lines, which is in accord with the X-ray diffraction data indicating on the presence of the triply coordinated Lewis base molecule in both adducts. If a THF solution of 1 is held for a month at 20 °C on air under stirring, a sandwich complex of 1 with previously unknown bis-2,2′-tetrahydrofuryl peroxide (THFPO) is formed. The THFPO ligand in this sandwich, {[(o-C6F4Hg)3]2(THFPO)} (7), provides all its four oxygen atoms for the bonding to the molecules of 1. Two of these oxygen atoms, belonging to the tetrahydrofuryl moieties, are cooperatively bound each by three Hg atoms of the neighbouring macrocyclic unit whereas two others, belonging to the peroxide group, coordinate to a single Hg atom of the adjacent macrocycle.  相似文献   

3.
Cyclic trimeric perfluoro-o-phenylenemercury (o-C6F4Hg)3 readily reacts with N,N-dimethylacetamide and n-butyronitrile to form the complexes {[(o-C6F4Hg)3](MeCONMe2)2} and {[(o-C6F4Hg)3](PrnCN)}, respectively. According to X-ray diffraction data, the amide ligands are located above and below the plane of the macrocycle, each being coordinated to all Hg atoms of the macrocycle through the O atom. The nitrile ligand is bound to the macrocycle through the N atom, all Hg atoms being also involved in this bonding.  相似文献   

4.
As was shown by IR spectroscopy, the reaction of the three-mercury anticrown (o-C6F4Hg)3 (1) with the [H3BCN]ion in THF affords the complexes {[(o-C6F4Hg)3][H3BCN](5) and [(o-C6F4Hg)3]2[H3BCN](6). Complex 6 was isolated from solution in the analytically pure state. According to X-ray diffraction data, complex 6 has a double-decker sandwich structure, in which the borohydride group of the [H3BCN]? anion is bound to one anticrown molecule by three B-H-Hg bridges, whereas the cyanide group is cooperatively coordinated by three mercury centers of another molecule 1 through the nitrogen atom. The reaction of compound 1 with triethylamineborane Et3NBH3 in THF affords the 1: 1 complex ~[(o-C6F4Hg)3][Et3NBH3]~ (7). In this adduct, the binding of the aminoborane to the mercury anticrown is also accomplished by B-H-Hg bridges. The stability constants of complexes 5 and 6 in THF were determined.  相似文献   

5.
Cyclic trimeric perfluoro-o-phenylenemercury (o-C6F4Hg)3 (1) is capable of reacting with nitromethane to give complex {[(o-C6F4Hg)3](CH3NO2)} (2) containing one molecule of the nitro compound per one macrocycle molecule. In this complex, the nitromethane ligand is bound to 1 by its both oxygen atoms, one of which is simultaneously coordinated to all three Hg centres of the macrocycle while the other interacts with a single Hg centre. The complex of similar composition, {[(o-C6F4Hg)3](C6H5NO2)} (3), is produced in the interaction of 1 with nitrobenzene. In this complex too, the both oxygen atoms of the nitro group are involved in the bonding to the macrocycle. A distinctive feature of 3 is that here one oxygen atom of the coordinated nitro derivative is bound by only two Hg centres of 1 whereas the other interacts again with a single Hg site. The reaction of 1 with 5-nitroacenaphthene affords a 1:1 complex, {[(o-C6F4Hg)3](C12H9NO2)} (4), having a polydecker sandwich structure in the crystal. Unlike in 3, the aromatic rings of the nitroarene units in 4 are disposed virtually in parallel to the macrocycles. The nitro compound in 4 behaves again as a bidentate ligand, forming three Hg-O bonds with one of the adjacent macrocycles and a single Hg-O bond with another molecule of 1. The complex is characterized also by shortened Hg-C contacts between the Hg centres of 1 and the carbon atoms of the nitroarene moiety as well as shortened C-C contacts between the carbon atoms of the nitroarene and the macrocycle. In the interaction of 1 with 1-nitropyrene, complexes of two compositions, viz. {[(o-C6F4Hg)3](C16H9NO2)} (5) and {[(o-C6F4Hg)3](C16H9NO2)3} (6) are formed. An X-ray diffraction study of 6 has shown that in this adduct two of three coordinated molecules of the nitro compound are located on one side of the metallacycle plane while the third nitroarene molecule is disposed on its other side. The aromatic rings of all three nitropyrene ligands in 6 are practically parallel to the mean plane of the macrocycle. In contrast to 2-4, each molecule of the nitroarene in 6 is bonded to 1 by a single oxygen atom which is coordinated only to one Hg centre. In the case of one of the nitropyrene ligands that forms much longer Hg-O bond with 1 than two others, an additional contribution to the bonding is made by shortened Hg-C contacts between the macrocycle and the carbon atoms of the aromatic pyrene core and also by shortened C-C contacts between the carbon atoms of the coordinated nitroarene and 1. The synthesized adducts are the first examples of complexes of an anticrown with nitro compounds.  相似文献   

6.
The reaction of cyclic trimeric perfluoro-o-phenylenemercury (o-C6F4Hg)3 (1) with the polyhedral [B12H11SCN]2– anion in THF at 20 °C affords the {[(o-C6F4Hg)3](B12H11SCN)}2– (4) and {[(o-C6F4Hg)3]2(B12H11SCN)}2– (5) complexes. Complex 5 was isolated as the tetrabutylammonium salt. X-ray diffraction analysis showed that this complex has a bent-sandwich structure in which the [B12H11SCN]2– anion is located between the planes of two molecules 1 and is coordinated to both these molecules through B—H—Hg bridges and S—Hg bonds. The stability constants of complexes 4 and 5 in THF (20 °C), which were determined from the IR spectroscopic data, are 16 L mol–1 and 992 L2 mol–2, respectively.  相似文献   

7.
Treatment of the unsymmetrical β-iminoamine ligands [PhCN(Ar)CHCNH(Ar)Me] with the zerovalent complex Pd(dba)2 in the presence of the methallyloxyphosphonium salt, gives high yields of the cationic β-diimine complexes [PhCN(Ar)CH2CN(Ar)(Me)Pd(η3-C4H7)]+[PF6] (Ar = 2-Me-C6H4 (7); 2-MeO-C6H4 (8); 2,6-Me2-C6H3 (9); 2,6-iPr2-C6H3 (10)). All the new complexes have been characterised by NMR and IR spectroscopy. The structure of the cationic methallyl palladium complex (10) has been solved by X-ray crystallography.  相似文献   

8.
The reactions of three-mercury anticrown (o-C6F4Hg)3 (1) with acetoacetic ester (AE), malonic ester (ME), and malonodinitrile (MN) afford 1: 1 complexes {[(o-C6F4Hg)3](AE)} (3), {[(o-C6F4Hg)3](ME)} (4), and {[(o-C6F4Hg)3](MN)} (5). The structures of complexes 35 were determined by X-ray diffraction analysis. Complex 3 has a discrete structure in the solid state, whereas complexes 4 and 5 form in the crystal extended stacks representing polydecker sandwiches with alternating molecules of 1 and ME or MN. According to the X-ray diffraction and IR spectral data, the molecule of AE in complex 3 is in the keto form.  相似文献   

9.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

10.
Protonation of the trimethylenemethane derivatives, Cp*Zr(σ2,π-C4H6)[N(R1)C(Me)N(R2)] (1a: R1=R2=i-Pr and 1b: R1=Et, R2=t-Bu) (Cp*=η5-C5Me5), by [PhNMe2H][B(C6F5)4] in chlorobenzene at −10 °C provides the cationic methallyl complexes, Cp*Zr(η3-C4H7)[N(R1)C(Me)N(R2)] (2a: R1=R2=i-Pr and 2b: R1=Et, R2=t-Bu), which are thermally robust in solution at elevated temperatures as determined by 1H NMR spectroscopy. Addition of B(C6F5)3 to 1a and 1b provides the zwitterionic allyl complexes, Cp*Zr{η3-CH2C[CH2B(C6F5)3]CH2}[N(R1)C(Me)N(R2)] (3a: R1=R2=i-Pr and 3b: R1=Et, R2=t-Bu). The crystal structures of 2b and 3a have been determined. Neither the cationic complexes 2 or the zwitterionic complexes 3 are active initiators for the Ziegler-Natta polymerization of ethylene and α-olefins.  相似文献   

11.
The chiral, terpenoid-substituted yttrocene [(η5-neomenthylCp)2Y{o-C6H4CH2NMe2}] (1) can be prepared via facile arene elimination starting from [Y(o-C6H4CH2NMe2)3]. Compound 1 retains a C1-symmetric structure in solution on the NMR time scale, due to tight binding of the amine donor. The (−)-phenylmenthyl-substituted complexes [(η5-(−)-phenylmenthylCp)2Y(μ-Cl)2Li(OEt2)2] (5) and [(η5-(−)-phenylmenthylCp)2YN(SiMe3)2] (6) were prepared via salt metathesis. Reaction of YCl3 with the planar chiral (1-neomenthylindenyl)lithium predominantly produced a single, C2-symmetric, racemic-like diastereomer. The X-ray crystal structure analysis confirmed that [(η5-(+)-NMInd)2Y(μ-Cl)2Li(Et2O)2] (7) represents the same p-S, p-S metallocene diastereomer and adopts a very similar conformation as observed by Erker in his zirconocene complexes. Complex 7 reacts with LiN(SiMe3)2 to form [(η5-(+)-NMInd)2YN(SiMe3)2] (8) with retention of configuration. Complexes 1, 6 and 8 showed moderate to good catalytic activity in asymmetric hydroamination/cyclizations of aminoalkenes, but enantioselectivities were limited to a maximum of 38% ee for the sterically most hindered catalyst 8. The indenyl complex 8 is prone to protolytic loss of an indenyl ligand at low (?0.5%) catalyst loading, if sterically undemanding aminoalkene substrates are applied.  相似文献   

12.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

13.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

14.
Three monochlorotitanium complexes Cp′Ti(2,4-tBu2-6-(CPh2O)C6H2O)Cl [Cp′ = η5-C5H5 (2), η5-C5(CH3)5 (3), η5-C5H2Ph2CH3 (4)] have been synthesized in high yields (>90%) by the reaction of corresponding Cp′TiCl3 with the dilithium salt of ligand 2,4-tBu2-6-(CPh2OH)C6H2OH (1). When activated by [Ph3C]+[B(C6F5)4] and AliBu3, complexes 24 exhibit reasonable catalytic activity for ethylene polymerization, producing polyethylenes with moderate molecular weights and melting points. Addition of excess water to complex 2 gave the oxo-bridged complex [Ti(η5-C5H5)(2,4-tBu2-6-(CPh2O)C6H2O)]2O (5). Complexes 4 and 5 were characterized by single crystal X-ray diffraction.  相似文献   

15.
Reaction of the neutral tricarbaborane nido-7,8,9-C3B8H12 (1) with triethylamine in CH2Cl2 led to quantitative deprotonation and isolation of the corresponding Et3NH+ salt of the [nido-7,8,9-C3B8H11] anion (2). This was converted into PSH+ and Me4N+ salts via metathetic cation exchange. Heating of the solid Me4N+[7,8,9-C3B8H11] in mineral oil at 350 °C for 2 h resulted in thermal rearrangement and isolation of the cage isomeric compound Me4N+[7,8,10-C3B8H11]. Finally, compound 1 was directly complexed via reaction with [CpFe(CO)2]2 (Cp = η5-C5H5) to generate the ferratricarbollide sandwich [1-Cp-closo-1,2,4,10-FeC3B8H11] (4) in 60% yield. The structures of all the generic compounds of tricarbollide chemistry, 1 (PSH+ salt), 2 (MePPh3+salt), and 4, were established unambiguously by an X-ray diffraction analysis.  相似文献   

16.
The reactions of [(ind)Ru(PPh3)2CN] (ind = η5-C9H7) (1) and [CpRu(PPh3)2CN] (Cp = η5-C5H5) (2) with [(η6-p-cymene)Ru(bipy)Cl]Cl (bipy = 2,2′-bipyridine) (3) in the presence of AgNO3/NH4BF4 in methanol, respectively, yielded dicationic cyano-bridged complexes of the type [(ind)(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (4) and [Cp(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (5). The reaction of [CpRu(PPh3)2CN] (2), [CpOs(PPh3)2CN] (6) and [CpRu(dppe)CN] (7) with the corresponding halide complexes and [(η6-p-cymene)RuCl2]2 formed the monocationic cyano-bridge complexes [Cp(PPh3)2Ru(μ-CN)Os(PPh3)2Cp](BF4) (8), [Cp(PPh3)2Os(μ- CN)Ru(PPh3)2Cp](BF4) (9) and [Cp(dppe)Ru(μ-CN)Os(PPh3)2Cp](BF4) (10) along with the neutral complexes [Cp(PPh3)2Ru(μ-CN)Ru (η6-p-cymene)Cl2] (11), [Cp(PPh3)2Os(μ-CN)Ru(η6-p-cymene)Cl2] (12), and [Cp(dppe) Ru(μ-CN)Ru(η6-p-cymene)Cl2] (13). These complexes were characterized by FT IR, 1H NMR, 31P{1H} NMR spectroscopy and the molecular structures of complexes 4, 8 and 11 were solved by X-ray diffraction studies.  相似文献   

17.
The chelate 1,2-bis(imine)nickel(butadiene) complex 4a (chelate ligand derived from condensation of biacetyl with 2,6-diisopropylaniline) adds the strong Lewis acid B(C6F5)3 at the terminal carbon atom of the butadiene ligand to yield the dipolar substituted π-allyl-type betaine complex (lig)Ni[η3-C3H4-CH2B(C6F5)3] (Z-6a). At 90 °C the kinetically formed product equilibrated with its E-6a isomer. Similarly, 4a adds the boron Lewis acid (pyrrolyl)B(C6F5)2 to yield the corresponding neutral dipolar π-allyl betaine complex Z-7a, that slowly equilibrated with E-7a over several hours at ambient temperature. Protonation of the butadiene ligand of complex 4a was achieved by treatment with the neutral Brønsted acid (2H-pyrrol)B(C6F5)3 to yield the [(lig)Ni(η3-crotyl)+][(pyrrolyl)B(C6F5)3] salt 9a (Z-/E-9a ratio=90:10 upon preparation). At 298 K this salt rearranged to a 5:95 mixture of Z-9a/E-9a with a Gibbs activation energy of ΔG (298 K)=22.3±0.2 kcal mol−1. Complex 4a added [Ph3C+] to the butadiene ligand to yield the salt [(lig)Ni(η3-C3H4-CH2CPh3)+][B(C6F5)4] (Z-12a), that proved isomerically stable under the applied reaction conditions. Similar reactions were carried out starting from the acenaphthylene 1,2-dione derived chelate bis(imine)Ni(butadiene) complex 4b. The systems 6, 7, 9 and 12 were found to be active ethene polymerization catalysts in the presence of Al(i-Bu)3.  相似文献   

18.
Geometries and electronic structures of the complexes of halide anions with cyclic trimerico-phenylenemercury, (o-C6H4Hg)3, perfluoro-o-phenylenemercury, (o-C6F4Hg)3, vinylenemercury, (C2H2Hg)3, and perfluorovinylenemercury, (C2F2Hg)3, were modelled by the MNDO method. Calculations were performed for [L-X] semisandwich complexes, [X-L-X]2– bipyramidal complexes, and [L-X-L] sandwich complexes (where X=Hal,L is a mercury-containing macrocycle). Based on the results of calculations, we concluded that it was advantageous to describe the chemical bonding between halide anions and mercury-containing macrocycles in terms of generalized chemical bonds, which were successfully used for -complexes of transition metals. In the [L-X] semisandwich complexes, the halide anion and the metallacycle are involved in the formation of three generalized chemical bonds: one headlight-shaped -bond and two two-lobe -bonds. In the [X-L-X]2– bipyramidal complexes, each halide anion forms three generalized chemical bonds with the macrocycle. It is possible because the macrocycleL has unoccupied molecular orbitals suitable for the formation of such bonds; these MOs consist mainly of the orbitals of mercury atoms directed toward both the upper and lower halogen atoms. In the [L-X-L] sandwich complexes, the halide anion cannot be bonded to each ringvia three bonds, and, hence, an unsymmetrical structure is formed, in which the rings are located at different distances from the central atom: the [L-X] semisandwich complex solvated by macrocycleL.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1035–1042, June, 1995.The authors are grateful to V. I. Faustov for valuable remarks.This work was supported by the Russian Foundation for Basic Research (Project No. 93-03-18342).  相似文献   

19.
The complexation of mercury(II) cyanide with macrocyclic ligands 15-crown-5,18-crown-6 and dibenzo-24-crown-8 in dimethylsulfoxide was studied using199Hg NMR measurements. No significant complexation with 15-crown-5was observed. The stability constants Ks for 1 : 1 complexes with two other ligands were determined and found to be similar, in contrary to the results reported in nitrobenzene. Solvent effects on Ks values obtained are discussed in comparison with the literature data. X-ray crystal structure of Hg(CN)2.A18-crown-6 was also determined.  相似文献   

20.
The syntheses and structures of a series of new lanthanide complexes supported by a chelating diamide ligand N,N′-bis(trimethylsilyl)-o-phenylenediamine are described. Anhydrous LnCl3 reacts with Li2[o-(Me3SiN)2C6H4], followed by treatment of NaC5H4Me in 1:1:2 molar ratio to afford the corresponding anionic complexes: {[o-(Me3SiN)2C6H4]Ln(MeC5H4)2}{Li(DME)3} [Ln = Yb (1), Sm (2), Nd(3)] in high yield. These complexes were characterized by elemental analysis, IR and 1H NMR. The molecular structures of 1 and 2 were further determined by X-ray diffraction techniques to be an ion-pair complex composed by an anion [o-(Me3SiN)2C6H4]Ln(MeC5H4)2] and a cation [Li(DME)3]. Complexes 1-3 showed high catalytic activity for the polymerization of methyl methacrylate (MMA) at r.t., giving the syndiotactic-rich polymers with relatively narrow molecular weight distributions (Mw/Mn = 1.64-1.82).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号