首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

2.
Complexes CuL3Cl2, PdL2Cl2 and PtL2Cl2, where L is a novel ligand from the series of 2-substituted 5-aminotetrazoles, namely 5-amino-2-tert-butyltetrazole (1), have been synthesized by the reaction of metal(II) chlorides with 1 and characterized by IR spectroscopy, thermal and X-ray analyses. The crystallographic structural analysis of these complexes revealed that 1 acts as a monodentate ligand coordinated to the metal via endocyclic N4 atom. Platinum complex demonstrates promising cytotoxicity against human cervical carcinoma cells with IC50 value average between those of cisplatin and carboplatin.  相似文献   

3.
Several complexes of the formula trans-[Pt(Meug)(Am)Cl2], Meug: methyleugenol (4-allyl-1,2-dimethoxybenzene), a η2-coordinated olefin, and Am: ammine, methylamine, diethylamine, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine and p-anisidine have been prepared. UV, IR, Raman, 1H NMR, 13C NMR and 2D NMR spectra of the complexes were recorded and analyzed.  相似文献   

4.
Chiral C2-symmetric bis(imidazoline) pincer ligands 2a-d have been synthesized for the first time. Direct cycloplatination of these ligands with K2PtCl4 in dry acetic acid afforded the corresponding cycloplatinated pincer complexes 3a-d. The X-ray single-crystal structure of platinum complex 3d and the preliminary studies on the photoluminescent properties of 3 are reported.  相似文献   

5.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

6.
Eight new platinum(II)/palladium(II) complexes with 4-toluenesulfonyl-L-amino acid dianion and diimine/diamine ligands, [Pd(en)(Tsile)]·H2O (1), [Pd(bipy)(Tsile)] (2), [Pd(bipy)(Tsthr)]·0.5H2O (3), [Pd(phen)(Tsile)]·0.5H2O (4), [Pd(phen)(Tsthr)]·H2O (5), [Pd(bqu)(Tsthr)]·1.5H2O (6), [Pt(en)(Tsser)] (7), and [Pt(en)(Tsphe)]·H2O (8), have been synthesized and characterized by elemental analyses, 1H NMR and mass spectrometry. The crystal structure of 7 has been determined by X-ray diffraction. Cytotoxicities were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. The complexes exert cytotoxicity against HL-60, Bel-7402, BGC-823, and KB cell lines with 4 having the best cytotoxicity against HL-60, Bel-7402, and BGC-823 cell lines; the compounds are less cytotoxic than cisplatin.  相似文献   

7.
Cisplatin analogues, cis-dichloro(ethylenediamine-N,N′-di-3-propanoic acid)platinum(II) (1) and cis-iodo(ethylenediamine-N,N′-di-3-propanoic acid)platinum(II) (2), as well as trans-dichloro-(ethylenediamine-N,N′-di-3-propanoato)platinum(IV) (3), trans-dibromo(ethylenediamine -N,N′-di-3-propanoato)platinum(IV) (4), trans-dichloro(propylenediamine-N,N′-diacetato)-platinum(IV) (5) and trans-dibromo(propylenediamine-N,N′-diacetato)platinum(IV) (6), -([Pt(H2eddp)Cl2], [Pt(Heddp)I], trans-[Pt(eddp)Cl2], trans-[Pt(eddp)Br2], trans-[Pt(pdda)Cl2] and trans-[Pt(pdda)Br2], respectively) were used to assess antitumor selectivity against human adenocarcinoma HeLa cells. The results show that different oxidation states of platinum, different halide ligands, chelating aminocarboxylato and diamine backbones have similar effects with edda-type ligands and activity is lower than for cisplatin.  相似文献   

8.
New complexes of the formulae K3[RhL 3]·2 H2O, [PdL]·H2O and [M(LH2)Cl2] [whereM = Pd, Pt andLH2 = bis(o-aminobenzenesulfonyl)ethylenediamine] have been prepared and characterized by conductivity measurements, thermogravimetric analysis, X-ray powder patterns and IR, Ligand Field and1H-NMR spectroscopy.
Rhodium(III), Palladium(II)- und Platin(II)-Komplexe mit Bis(o-aminobenzolosulfonyl)ethylendiamin (Kurze Mitteilung)
Zusammenfassung Neue Komplexe der allgemeinen Formeln K3[RhL 3]·2H2O, [PdL]·H2O und [M(LH2)Cl2] mitM = Pd, Pt undLH2 = Bis(o-aminobenzolosulfonyl)ethylendiamin wurden dargestellt und mit Konduktionsmessungen, thermogravimetrischen Analysen, Röntgenstrukturanalysen, IR, Ligandfeld- und1H-NMR-Spektroskopie charakterisiert.
  相似文献   

9.
New pyridine-phosphine chalcogenide ligands, tris[2-(2-pyridyl)ethyl]phosphine sulfide 1a and tris[2-(2-pyridyl)ethyl]phosphine selenide 1b, react with zinc(II) and cadmium(II) chlorides in EtOH at room temperature to afford complexes of compositions 2ZnCl2·2L (2, L = 1a) and 3CdCl2·2L (3a,b, L = 1a,b) in high yields. The solid-state structure of complexes 2, 3 has been proved by X-ray analysis data. Complex 2 is a centrosymmetric dimer, where two atoms of zinc are bonded by two bridging pyridine-phosphine sulfide ligands through N atoms. Complexes 3a,b exist as polymeric chains with each bridging ligand acting as a chelate N,S- or N,Se-donor to one cadmium(II) center and as a pyridine N-donor to the next cadmium(II) center.  相似文献   

10.
11.
A series of novel dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,2-phenylenebis(methylene))dicyclohexane-1,2-diamine (HL), and mono-carboxylic acid derivatives as ligands have been designed, synthesized, and characterized. In vitro cytotoxicity evaluation of synthesized complexes against human HepG-2, A549, HCT-116, and MCF-7 cancer cell lines has been conducted by MTT assays. All compounds showed antitumor activity to HepG-2 and HCT-116 cell lines. Compound L2 exhibited better cytotoxicity than that of carboplatin against HepG-2 and A549 cell lines and also showed comparable activity against HCT-116 cell line.  相似文献   

12.
The goal of this study was to establish the relationship between the 19F NMR line broadening and the varying distance between the 19F nucleus and copper(II) ion, with the aim of gathering data that can be used to interpret 19F NMR spectra of subsequent fluorine-labeled, copper-binding proteins. Fluorinated alkyl and aryl copper(II) carboxylates were synthesized from fluorinated carboxylic acids and Cu(OH)2. The copper(II) carboxylates were characterized using 19F NMR, IR, and single crystal X-ray diffraction. In the alkyl carboxylate compounds, the line broadening and chemical shift lessened with increased distance between the fluorine atom and the copper ions; however, in the aryl carboxylate derivatives, increased distance was not a factor in the amount of line broadening or change in chemical shift between the acid and metal salt. The compound, bis(3-(trifluoromethyl)butyrate) copper(II) (5) was found to possess the optimum combination of decreased line broadening and increased chemical shift sensitivity in 19F NMR. The crystal structures obtained for compounds 1, 2, 4, and 6 were analogous to previous copper(II) carboxylate complexes, though it is noted that compound 6, bis(5,5,5-trifluoropentanoate) copper(II) assumes a tetrameric structure lacking apical ligands, and thus enables the formation of an extended network of near-neighbor copper(II) ions.  相似文献   

13.
[CpRu(dppf)Cl] (Cp=η5-C5H5) (1) and [(HMB)Ru(dppf)Cl]PF6 ((HMB)=η6-C6Me6) (3) react with different donor ligands to give rise to N-, P- and S-bonded complexes. The stoichiometric reactions of 1 and 3 with NaNCS give the mononuclear complexes [CpRu(dppf)(NCS)] (2) and [(HMB)Ru(dppf)(NCS)]PF6 (4), respectively, in yields above 80%, while 3 also gives a dppf-bridged diruthenium complex [(HMB)Ru(NCS)2]2(μ-dppf) (5) in 67% yield from reaction with four molar equivalents of NaNCS. Compound 5 is also obtained in 70% yield from the reaction of 4 with excess NaNCS. With CH3CN in the presence of salts, both 1 and 3 give their analogous solvento derivatives [CpRu(dppf)(CH3CN)]BPh4 (6) and [(HMB)Ru(dppf)(CH3CN)] (PF6)2 (7). With phosphines, the reaction of 1 gives chloro-displaced complexes [(CpRu(dppf)L]PF6 (L =PMe3 (8), PMe2Ph(9)), whereas the reaction of 3 with PMe2Ph leads to substitution of dppf, giving [(HMB)Ru(PMe2Ph)2Cl] PF6 (10). The reaction of 1 with NaS2CNEt2 gives a dinuclear dppf-bridged complex [{CpRu(S2CNEt2)}2(μ-dppf)] (11), whereas that of 3 results in loss of the HMB ligand giving a mononuclear complex [Ru(dppf)(S2CNEt2)2] (12). With elemental sulfur S8, 1 is oxidized to give a dinuclear CpRuIII dppf-chelated complex [{CpRu(dppf)}2(μ-S2)](BPh4)Cl (13), whereas 3 undergoes oxidation at the ligand, giving a dppf-displaced complex [(HMB)Ru(CH3CN)2Cl]PF6 (14) and free dppfS2. The structures of 1, 2, 5-9, 11, 13 and 14 were established by X-ray single crystal diffraction analyses. Of these, 5 and 11 both contain a dppf-bridge between RuII centers, while 13 is a dinuclear CpRuIII disulfide-bridged complex; all the others are mononuclear. All complexes obtained were also spectroscopically characterized.  相似文献   

14.
The electrochemistry of 1,1′-bis(dicyclohexylylphosphino)ferrocene (dcpf) was examined in methylene chloride with tetrabutylammonium hexafluorophosphate or tetrabutylammonium tetrakis(pentafluorophenyl)borate as the supporting electrolyte. The oxidation of dcpf is complicated by a follow-up reaction. Seven new complexes containing dcpf and one new compound containing 1,1′-bis(di-tert-butylphosphino)ferrocene (dtbpf) were prepared and characterized. The new complexes were analyzed by cyclic voltammetry and the oxidation of these complexes occurred at a more positive potential than the free ligand. In addition, the X-ray structure of [PdCl2(dcpf)] was determined and compared to other palladium complexes containing bisphosphinometallocene ligands. Five different palladium complexes containing bisphosphinometallocene ligands were examined as catalyst precursors in Buchwald-Hartwig catalysis.  相似文献   

15.
A series of mononuclear and binuclear cyclometalated platinum(II) complexes containing new terdentate meta-bis(2-pyridoxy)benzene ligands: 3,5-bis(2-pyridoxy)toluene (L1H) and 3,5-bis(2-pyridoxy)-2-dodecylbenzene (L2H): [Pt(L1)Cl] (1), [Pt(L2)Cl] (2), [Pt(L1)(CH3CN)](ClO4) (3), {[Pt(L1)]2(μ-dppm)}(ClO4)2 (4), {[Pt(L2)]2(μ-dppm)}(ClO4)2 (5), {[Pt(L1)]2(μ-pyrazole)}(ClO4) (6), {[Pt(L2)]2(μ-pyrazole)}(ClO4) (7), {[Pt(L1)]2(μ-imidazole)}(ClO4) (8) and {[Pt(L2)]2(μ-imidazole)}(ClO4) (9), have been synthesized and characterized. These ligands are coordinated to platinum(II) in a “pincer”-like manner and the presence of pyridyl donors enhances the availability of the ligand π orbitals for electronic transition. Spectroscopic properties of these cyclometalated complexes were studied. While the non-coplanar nature of the ligands hinders ligand-ligand and metal-metal interactions in these cyclometalated complexes, the presence of long hydrocarbon side chain on ligand L2H seems to alleviate such hindrance. Intermolecular π-π, and possibly Pt-Pt interactions were observed in complex 2 at high concentration.  相似文献   

16.
New platinum(II) and palladium(II) complexes of glyoxilic acid oxime (gao) have been prepared and characterised by infrared (4000–150 cm−1) and Raman (4000–200 cm−1) spectra. The gao acts as bidentate ligand bonding through the oxime nitrogen and carboxyl oxygen atoms to form neutral bis-chelate square-planar complexes. The lowest energy conformer of the gao ligand (ectt) was selected among 16 theoretically possible conformers on the basis of ab initio calculations at HF/3-21G*, HF/6-31G* and HF/6-311** levels of the theory from which structural parameters and conformational stabilities have been obtained. A complete vibrational assignment of the gao was performed for the lowest energy ectt conformer on the basis of ab initio optimised parameters and normal coordinate analysis calculations (PED). NCA calculations of the complexes studied were also performed.  相似文献   

17.
Preparations of trans-[PtX2(Imt)2] (Imt =?2-imidazolidinethione, X=Cl? or I?) and [Pt(Imt)4]I2 are described. These complexes were characterized by elemental analysis, thermal analysis, mid- and far-IR spectroscopy, and NMR (1H and 13C) spectroscopy. The crystal and molecular structure of [Pt(Imt)4]I2 ·?DMSO ·?H2O was determined by X-ray diffraction methods. The structural data reveal the following features: (a) the platinum atom in [Pt(Imt)4]2+ is essentially in a square-planar environment, (b) the entire dication possesses approximately C 2h symmetry, (c) no appreciable hydrogen bonding exists between the iodide ions and the Imt ligands in the dication, (d) two pairs of two mutually cis Imt ligands are arranged above and below the PtS4 plane, respectively, and (e) two planes defined by two trans Imt rings are perpendicular to each other.  相似文献   

18.
Novel bridged platinum(II) biscarbene complexes are reported: 1,1′-dimethyl-3,3′-methylene-4-diimidazolin-2,2′-diylidene platinum(II) (3) and 1,1′-dimethyl-3,3′-ethylene-4-diimidazolin-2,2′-diylidene platinum(II) complexes 4 are directly accessible in high yields starting from platinum halides. The one-pot synthesis obviates the need for multi-step reactions via metal precursors or free carbenes. An X-ray crystal structure of 1,1′-dimethyl-3,3′-methylene-4-diimidazolin-2,2′-diylidene platinum(II) dibromide (3b) confirmed the structural similarity to the known corresponding palladium complexes. Since free 1,1′-di-R-3,3′-methylene-4-diimidazolin-2,2′-diylidenes are only available in low yields this synthetic route provides an easy access to the corresponding carbene complexes.  相似文献   

19.
New palladium(II) and platinum(II) complexes containing bis(2-pyridylmethyl)amine (bpma) and saccharinate (sac), [Pd(bpma)(sac)](sac)·2H2O (1), [Pt(bpma)(sac)](sac)·2H2O (2), [Pd(bpma)Cl](sac)·2H2O (3) and [Pt(bpma)(sac)]Cl·1.5H2O (4), were synthesized and characterized by elemental analysis, IR, NMR and TG-DTA. A single-crystal X-ray analysis of 3 and 4 proved a distorted square-planar geometry around the metal ions with one tridentate bpma ligand and one Cl or sac monoanion. The [Pd(bpma)Cl]+ ions in 3 form dimers by intermolecular N-H?Cl and Pd?Pd interactions. The cations reside in the centers of a hydrogen-bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules, while the cations of 4 are connected by N-H?Cl and OW-H?O hydrogen bonds into one-dimensional chains. Cyclic planar tetrameric and trimeric water clusters were observed in 3 and 4, respectively. Cytotoxicity of 1-4 was tested against A549, C6 and CHO cells. Although 2 and 4 have no cytotoxicity, the best results were achieved for 1 and 3. In particular, the cyctotoxic activity of 3 is comparable to cisplatin.  相似文献   

20.
The reactions of CpRu(dppf)Cl (1) with the sulfur-containing ligands, thiophenol HSPh, 2-mercaptopyridine C5H4N(SH), thiourea SC(NH2)2, vinylene trithiocarbonate SCS(CH)2S and ethylene trithiocarbonate SCS(CH2)2S, yielded chloro-substituted derivatives, viz. the mono-ruthenium(II) complexes CpRu(dppf)(SPh) (2), [CpRu(dppf)(SC5H4NH)]BPh4 (3)BPh4, [CpRu(dppf)(SC(NH2)2]PF6 (4)PF6, [CpRu(dppf)(SCS(CH)2S)]Cl (5)Cl and [CpRu(dppf)(SCS(CH2)2S)]Cl (6)Cl, respectively. Treatment of 1 with AuCl(SMe2) in the presence of NH4PF6 gave [(CpRu(dppf)(SMe2)]PF6 (7)PF6. The reaction of 1 or 6 with SnCl2 resulted in cleavage of chloro and dithiocarbonate ligands, respectively, to give CpRu(dppf)SnCl3 (8). All complexes were spectroscopically characterized and the structures of 2 and cationic complexes 4-7 were determined by single-crystal diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号