首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2003,15(10):855-861
The antioxidant capacity of some calcium antagonists and one calcium agonist 1,4‐dihydropyridines (DHPs) was evaluated by a competitive kinetic procedure. With the exception of Amlodipine, all the calcium antagonist DHPs display an unambiguous antioxidant capacity, while for the calcium agonist DHP (Bay K 8644) no measurable reactivity towards peroxyl radicals could be detected. The finding was corroborated by an electroanalytical investigation of the redox properties of DHPs compounds to get an insight about both the thermodynamic constraints of their oxidation process and reaction pattern. The oxidation potentials decrease with both antioxidant capacity and increasing basic character, thus suggesting the relevance of the electron density on the DHP ring. For all the compounds investigated, the overall oxidation process takes place through a primary one‐electron step accompanied by a fast proton release and the formation of a neutral radical undergoing a second much easier one‐electron step. The protonated form of the parent pyridine derivative is thus generated as the final product. This pattern is relevant for the antioxidant effect, since the radical intermediate is much more prone to be oxidized than to be reduced, thus fully preventing the propagation of the oxidative chain reaction. In the case of calcium antagonist DHPs, the above release of protons complicates the overall oxidation process by introducing a parasitic side reaction where a coupling between protons and the starting species takes place. This DHP self‐protonation subtracts part of the original species from the electrode process because the parent cationic species is no longer electroactive. Conversely, the calcium agonist DHP, which is more difficult to be oxidized, turned out to be such a weak base as to be unable to undergo the self‐protonation reaction. The combined effect of oxidation potentials and proton binding capacity of DHPs is a key element for the redox transition, which could support their antioxidant effect and should be considered to some extent in accounting for the calcium antagonist vs calcium agonist effect.  相似文献   

2.
Nitroxide‐containing organic radical polymers (ORPs) have captured attention for their high power and fast redox kinetics. Yet a major challenge is the polymer's aliphatic backbone, resulting in a low electronic conductivity. Recent attempts that replace the aliphatic backbone with a conjugated one have not met with success. The reason for this is not understood until now. We examine a family of polythiophenes bearing nitroxide radical groups, showing that while both species are electrochemically active, there exists an internal electron transfer mechanism that interferes with stabilization of the polymer's fully oxidized form. This finding directs the future design of conjugated radical polymers in energy storage and electronics, where careful attention to the redox potential of the backbone relative to the organic radical species is needed.  相似文献   

3.
The synthesis, aggregation, and optical properties of a chiral, regioregular polythiophene, substituted with a conjugated substituent, are described. The polymer was prepared using a Stille coupling reaction. The fact that the side‐chain contributes to the absorption (UV‐vis), emission (fluorescence), and redox behavior (cyclic voltammetry) of the material demonstrates that the substituent contributes to the electronic properties. It was shown that the conjugated side‐chain chirally stacks in conditions in which the polymer backbone aggregates, which demonstrates the ability of conjugated polymers to induce a (chiral) lamellar organization of conjugated moieties, present in their side‐chain. The aggregation of both the side‐chain and the backbone was monitored using UV‐vis and CD spectroscopy. Finally, it is shown that the conjugated side‐chain can selectively be oxidized, without oxidizing the polythiophene backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1891–1900, 2009  相似文献   

4.
A number of natural polyphenols (chlorogenic acid ( 9 ), cordigol ( 11 ), cordigone ( 12 ), danthrone ( 1 ), 1,5-dihydroxy-3-methoxyxanthone ( 2 ), eriosematin ( 7 ), flemichin D ( 8 ), frutinone A ( 6 ), mangiferin ( 4 ), quercetin ( 5 ), 1,3,6,7-tetrahydroxyxanthone ( 3 ) and verbascoside ( 10 )) were investigated for their redox properties using cyclic voltammetry. The antioxidant properties of these compounds were also examined in two models, namely lipid peroxidation in rat synaptosomes and AAPH-mediated oxidation of serum albumin. Compounds with a catechol group ( 9, 4, 5, 3 and 10 ) were oxidized below 0.4 V and inhibited lipid peroxidation with IC50 values between 2 and 8 μM . Compounds having one or more isolated phenolic groups and showing an oxidation potential between 0.45 and 0.8 V ( 11, 12 and 8 ) inhibited lipid peroxidation with IC50 between 7 and 9 μM , except 2 (0.45 V), danthrone (0.96 V) and eriosematin which showed no or modest antioxidant activity. Some of the investigated compounds also protected albumin from oxidation, but no structure-activity relationship was apparent, suggesting that other factors beside redox potential influence this activity.  相似文献   

5.
Natural polyphenols are known to be oxidized by free radicals, which partially explains the antioxidant properties of a number of these compounds. This oxidation may also be used to synthesise new compounds of biological interest, for example, dimers. The present theoretical study describes the existing experimental evidence showing that silybin and dehydrosilybin [natural polyphenols isolated from milk thistle (Silybum marianum)] form dimers regioselectively. Based on DFT calculations, thermodynamic and kinetic values were computed in order to better understand the physicochemical behaviour of these dimerisation processes. Calculations showed that after H‐atom transfer (from polyphenol to radical), dimerisation could proceed in two steps: 1) bond formation and, when possible, 2) tautomerisation reorganisation. The former step is the limiting step, while the latter is crucial for the process to be thermodynamically favourable (ΔG<0). If this rearrangement is impossible then dimerisation is not feasible, or at least becomes a minor process (e.g., dehydrosilybin dimerisation after H‐atom abstraction from the 3‐OH group). This explains the regioselectivity of polyphenol dimerisation.  相似文献   

6.
A new class of segmented non-conjugated dopable polymers, built up from short conjugated blocks connected with flexible chains (spacers), has been proposed. After the redox reaction of doping these polymers exhibit properties similar to those of the fully conjugated polymers and increase considerably their electrical conductivity. A solid state polymer effect has been observed. It has been found that the conjugated building units (biphenyl, diphenyl ether and 1,3,4-oxadiazole) do not interact with the dopant when included in a low molecular weight substance. When these units are incorporated in a polymer chain they change their reactivity and the polymer can be doped. The doping process takes place only when the polymer is in the solid state and the nature of this phase is of considerable importance. The phenomenon observed, i.e. doping of non-conjugated polymers with segmented structure could be explained with a favourable arrangement of the conjugated blocks in the solid phase, leading to enhanced π-π - interaction (equivalent to extended conjugation). By the collective interaction of several conjugated blocks with the dopant the polymer is partially oxidized and charge carriers are formed. The result is enhanced electrical conductivity.  相似文献   

7.
Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.  相似文献   

8.
In this Perspective, we highlight the non-innocent behaviour of the bridging ligand in organometallic polynuclear metallic complexes displaying metal-carbon σ bonds between the metallic units and a strongly coupled conjugated carbon-rich bridging ligand. With the help of representative experimental and theoretical studies on polymetallic systems, but also on monometallic complexes, we point out that the level of implication of the carbon rich ligand in the redox processes is very sensitive to the nature of (i) the metal(s), (ii) the ancillary ligands and (iii) the carbon-rich ligand itself, and that this participation is frequently found to be major. Consequently, the general denomination M((n + 1)) that is usually used for oxidized species gives the picture that only the metal density is affected, which is misleading. Moreover, for polymetallic species, these elements make the mixed valence denomination and the use of standard methodologies to rationalize intramolecular electron transfer, such as the Hush model inaccurate. Indeed, these theoretical treatments of mixed-valent complexes have at their core the assumption of metal-based redox state changes. Quantum mechanical calculations, coupled with spectroscopic methods, such as EPR spectroscopy, turn out to be a valuable suite of tools to both identify and better describe those systems with appreciable ligand redox non-innocent character. Finally, some examples and perspectives of applications for this carbon-rich type of complexes that take advantage of their peculiar electronic structure are presented.  相似文献   

9.
The Cu-catalyzed alkyne-azide 1,3-dipolar cycloaddition variant provides a highly efficient entry to conjugated triazolyl-substituted (oligo)phenothiazine organosilicon derivatives with luminescence and reversible redox characteristics. Furthermore, by in-situ co-condensation synthesis several representative mesoporous MCM-41 type silica hybrid materials with embedded (oligo)phenothiazines are prepared and characterized with respect to their structural and electronic properties. The hybrid materials also can be oxidized to covalently bound embedded radical cations, which are identified by their UV/Vis absorption signature and EPR signals.  相似文献   

10.
Orientin, eriodictyol and robinin are polyphenolic compounds, and their oxidation mechanism is pH‐dependent, in two steps, involving a different number of electrons and protons. Orientin and eriodictyol first oxidation occurs at a lower potential, corresponding to the reversible oxidation of the catechol group, and is followed by an irreversible oxidation on the ring‐A at more positive potential. Robenin oxidation is irreversible, with the formation of electroactive products, and occurs at ring‐A and ring‐B. The electrochemical characterization of their redox behaviour brought useful data about their chemical stability, antioxidant and pro‐oxidant activity, enabling a comprehensive understanding of their redox mechanism.  相似文献   

11.
Macrocycles such as porphyrins and corroles have important functions in chemistry and biology, including light absorption for photosynthesis. Generation of near‐IR (NIR)‐absorbing dyes based on metal complexes of these macrocycles for mimicking natural photosynthesis still remains a challenging task. Herein, the syntheses of four new AgIII corrolato complexes with differently substituted corrolato ligands are presented. A combination of structural, electrochemical, UV/Vis/NIR‐EPR spectroelectrochemical, and DFT studies was used to decipher the geometric and electronic properties of these complexes in their various redox states. This combined approach established the neutral compounds as stable AgIII complexes, and the one‐electron reduced species of all the compounds as unusual, stable AgII complexes. The one‐electron oxidized forms of two of the complexes display absorptions in the NIR region, and thus they are rare examples of mononuclear complexes of corroles that absorb in the NIR region. The appearance of this NIR band, which has mixed intraligand charge transfer/intraligand character, is strongly dependent on the substituents of the corrole rings. Hence, the present work revolves round the design principles for the generation of corrole‐based NIR‐absorbing dyes and shows the potential of corroles for stabilizing unusual metal oxidation states. These findings thus further contribute to the generation of functional metal complexes based on such macrocyclic ligands.  相似文献   

12.
The synthesis, optical and electrochemical properties, and X-ray characterization of two thiazole derivatives capped by ferrocenyl groups (5 and 7) and their model compounds with one ferrocenyl, either at 2 or 5 position of the mono- or bis-thiazolyl rings (3, 9, 11, and 14), are presented. Bisferrocenyl thiazole 5 forms the mixed-valence species 5*+ by partial oxidation which, interestingly, shows an intramolecular electron-transfer phenomenon. Moreover, the reported heteroaromatic compounds show selective ion-sensing properties. Thus, ferrocenylthiazoles linked across the 5 position of the heteroaromatic ring are selective chemosensors for Hg2+ and Pb2+ metal ions; 5-ferrocenylthiazole 3 operates through two channels, optical and redox, for Hg2+ and only optical for Pb2+, whereas 1,1'-bis(thiazolyl)ferrocene 14 is only an optical sensor for both metal ions. Moreover, complex 3 behaves as an electrochemically induced switchable chemosensor because of the low metal-ion affinity of the oxidized 3*+ species. On the other hand, ferrocenylthiazole 9, in which the heterocyclic ring and the ferrocene group are linked across the 2 position, is a selective redox sensor for Hg2+ metal ions, and it responds optically, as does bis(thiazolyl)ferrocene 11, to a narrow range of cations (Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+). Finally, bis(ferrocenyl)thiazole 5 is a dual optical and redox sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+, whereas bis(ferrocenyl) compound 7, bearing a bis(thiazole) unit as a bridge, is only a chromogenic sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+. The experimental data and conclusions about both the electronic and ion-sensing properties are supported by DFT calculations which show, in addition, an unprecedented intramolecular electron-transfer reorganization after the first one-electron oxidation of compound 5.  相似文献   

13.
The characteristics of intramolecular hydrogen bonds (IMHB) have been systematically analyzed for a series of 32 different enols of derivatives of cyclobutane, cyclobutene, and cyclobutadiene bearing oxygen and nitrogen functionalities, at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level of theory. In those cases where two tautomers (interconnected by a hydrogen shift through the IMHB) exist, tautomer a, in which the HB-donor group (YH) is attached to the four-membered ring, is less stable than tautomer b, in which is the HB-acceptor (X) is the one attached to the four-membered ring. As expected the OH group behaves as a better HB-donor than the NH(2) group and the C==NH group as a better HB-acceptor than the C==O group, although the first effect clearly dominates. Accordingly, the expected IMHB strength follows the [donor, acceptor] trend: [OH,C==NH]>[OH,C==O]>[NH(2),C==NH]>[NH(2),C==O]. Quite unexpectedly, in all those compounds in which the functionality exhibiting the IMHB is unsaturated, the IMHB is weaker than in their saturated counterparts, verifying that the primary effect on the strength of the IMHB is the structure of the sigma-skeleton of the system. In the conjugated systems investigated here, the severe constraints imposed by the four-membered ring force the HB donor and acceptor to be far apart and the IMHB is rather weak. These geometrical constraints are less severe for the saturated analogues and the IMHB becomes stronger, confirming that the characteristics of the sigma-skeleton, and not the resonance-assisted hydrogen bond (RAHB) phenomenon, are the primary contributors to the strength of the IMHB in conjugated compounds.  相似文献   

14.
陈航 《电化学》1999,5(2):125-129
镍在碱溶液中阳极膜的形成和性质与化学电源和金属腐蚀等有关.在这方面已有较深入的研究报导.其研究方法也是多种多样,除一般的电化学方法[1,2]外,还有许多现场谱学方法,如:紫外_可见光谱[3],红外光谱[4],光热光谱[5],拉曼光谱[6],椭圆法[7...  相似文献   

15.
The methoxylation and glycosylation effect on the redox mechanism of citroflavones, isorhoifolin, linarin, diosmetin and diosmin, was investigated. All citroflavones’ hydroxyl groups can be electrochemically oxidised, and the oxidation at the B‐ring occurs at a lower potential than at the A‐ring. The electrochemical oxidation is irreversible, pH‐dependent, with occurrence of one or two oxidation products, which undergo reversible redox reactions, depending on the number of OH substituents on the molecule. The glycosylation leads to a steric effect and decreasing of the oxidation peak currents whereas the methylation involves the formation of nonelectroactive oxidation products.  相似文献   

16.
Polyphenols in plants such as tea may offer many health benefits. The leaf and bottled teas available on the market today are advertised with a strong emphasis on their antioxidant properties. In this study, we have quantified the total polyphenol, flavonoid, and theaflavin concentrations by simple colorimetric methods, measured the reactivity of polyphenols using direct and indirect oxidation methods, and identified specific polyphenols present using high-performance liquid chromatography in a variety of commercially available teas. We find that, per given volume, freshly brewed teas are richer in polyphenols and reactivity by a factor five or more compared to bottled teas. Within the brewed and bottled categories, white and green teas are richer in antioxidants than oolong and black teas although the differences are less than a factor of two. We also find that the presence of additives causes changes in antioxidant properties such as an enhancement in Cranberry Orange tea and a reduction in Earl Grey tea. Since we verified our results using several overlapping techniques, we are able to evaluate the analytical tools commonly used in antioxidant studies. We find that the Folin–Ciocalteu method of quantifying polyphenols is a good indicator of the relative antioxidant reactivity of teas.  相似文献   

17.
A series of symmetric fluorescent dyes built from a spirofluorene core bearing electroactive end groups and having different conjugated linkers were prepared with a view to their use as building blocks for the preparation of electrochemiluminescent (ECL) dyes and nanoparticles. Their electrochemical, spectroelectrochemical, and ECL properties were first investigated in solution, and structure/activity relationships were derived. The electrochemical and ECL properties show drastic variation that could be tuned by means of the nature of the π‐conjugated system, the end groups, and the core. In this series, highly fluorescent dye 1 based on a spirofluorene core and triphenylamine end groups connected via thiophene moieties shows the most promising and intriguing properties. Dye 1 is reversibly oxidized in three well‐separated steps and generates a very intense and large ECL signal. Its ECL efficiency is 4.5 times higher than that of the reference compound [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine). This remarkably high efficiency is due to the very good stability of the higher oxidized states and it makes 1 a very bright organic ECL luminophore. In addition, thanks to its molecular structure, this dye retains fluorescence after nanoprecipitation in water, which leads to fluorescent organic nanoparticles (FONs). The redox behavior of these FONs shows oxidation waves consistent with the initial molecular species. Finally, ECL from FONs made of 1 was recorded in water and strong ECL nanoemitters are thus obtained.  相似文献   

18.
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.  相似文献   

19.
The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.  相似文献   

20.
The mechanism of 2,2'6,6'-tetramethylpiperidin- N-oxyl (TEMPO)-mediated oxidation of alcohols to aldehydes and ketones in ionic liquids has been investigated using cyclic voltammetry and rotating disk electrode voltammetry. It is shown that the presence of bases (B) and their conjugate acids (BH (+)), as well as their p K as, strongly influences the rate of reaction. Data indicated that the first step in the oxidation is the formation of the alcoholate species via acid-base equlibrium with B. The alcoholate subsequently reacts with the active form of TEMPO (T (+), i.e., the one-electron oxidized form) forming an intermediate that further reacts with T (+) and B returning TEMPO catalytically, BH (+), and the carbonyl product. A kinetic model incorporating this pre-equilibrium step has been derived, which accounts for the experimentally observed reaction kinetics. Overall, the rate of reaction is controlled by the equilibrium constant for the pre-equilibrium step; as such, strong bases are required for more kinetically efficient transformations using this redox catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号