首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane is oxidized in aqueous solution with atmospheric oxygen and hydrogen peroxide in a reaction catalyzed by a NaVO3-pyrazine-2-carboxylic acid system. Methyl hydroperoxide is selectively formed at 50°C. The turnover number of the catalyst after 24 h amounts to 480, and the yield of methyl hydroperoxide is 24% with respect to H2O2. Formaldehyde and formic acid are mainly formed at 120°C. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1897–1899, October, 1997.  相似文献   

2.
The kinetic regularities of the influence of low 1‐octene concentrations on its epoxidation by tert‐butyl hydroperoxide in the presence of molybdenum disilicide (MoSi2) as a catalyst were investigated. The minimum in the dependence of the initial rate of hydroperoxide consumption on 1‐octene concentration was observed. The kinetic scheme of epoxidation, which includes the competition between hydroperoxide and olefin for the catalytic active centers, was proposed. The equation for the reaction rate was derived according to the kinetic scheme. The kinetic parameters of epoxidation were calculated. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 623–628, 2009  相似文献   

3.
The decomposition of 2-[4-(2-chloro-1,1-dimethylethyl)phenyl]propan-2-yl hydroperoxide in acetone catalyzed by H2SO4 affords 4-(2-chloro-1,1-dimethylethyl)phenol. The kinetics of this reaction at 56°C was studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1612–1613, August, 1999.  相似文献   

4.
Cyclohexene, dissolved in benzene is homogeneously oxidised with IrCl(CO)(PPh3)2 as catalyst. No induction period is observed if the concentration of hydroperoxide has a critical value. The reaction rate r increases with the concentration of cyclohexene from r = 1 to 15 mMol O2 l?1 min?1 in pure cyclohexene with turnover numbers of 3000. Product composition is practically independent of the catalyst and cyclohexene concentrations.  相似文献   

5.
The homogeneous catalytic oxidation of cyclohexane by molecular oxygen and hydrogen peroxide in a solution of acetic acid (HOAc) in the presence of cobalt(II) acetate Co(OAc)2 is studied. The high yields of cyclohexanol, cyclohexanone, and cyclohexyl hydroperoxide (0.10–0.15 mol/l) and the high rate of the process (w = 10–5–10–4 mol l–1 s–1) are explained by (1) mild conditions of oxidation in the medium of the HOAc solvent and (2) efficient initiation of the process due to the fast kinetics-controlled dissociation of H2O2 into radicals in the studied reaction medium under the action of cobalt cations. Quantitative relationships are found for the cyclohexane oxidation rate, the yield of target products, and the ratio of reactants participating in the process. The effect of hydrogen hydroperoxide additives on the concentrations of reduced and oxidized forms of the catalyst is studied by spectrophotometry in model mixtures. Quantum chemistry is employed to calculate the probabilities of some key elementary reactions. Calculated data agree well with the experiment.  相似文献   

6.
α‐Aminonitriles as key intermediates for the preparation of α‐amino acid derivatives, amides, diamines, peptides, proteins and heterocycles were synthesized through methylarene oxidation in the Strecker reaction using a unique combination of KI/ZnFe2O4 as the best catalyst and aqueous tert‐butyl hydroperoxide as oxidant. A wide range of amines and methylarenes were converted to the corresponding products. Operational simplicity, short reaction time and recyclability of the catalyst are advantages of this protocol.  相似文献   

7.
Green oxidation of 2-substituted imidazolines with tert-butyl hydroperoxide catalyzed by tetraphenylporphyrinatomanganese(III) chloride, [Mn(TPP)Cl], supported on polystyrene and silica bound imidazole is reported. A variety of 2-imidazolines were efficiently converted to their corresponding imidazoles by these catalytic systems in H2O. Ultrasonic (US) irradiation enhanced the catalytic activity of these catalysts and higher product yields were observed at shorter reaction times. These catalysts were re-used several times without significant loss of their catalytic activities. The effect of reaction parameters such as catalyst amount, reaction temperature, and the effect of US irradiation on the catalytic activity was also investigated.  相似文献   

8.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

9.
The kinetics of epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of molybdenum boride (Mo2B) was studied. The effects of reactant and reaction product concentrations on the process were examined. A kinetic scheme was proposed, and the kinetic parameters of the process were calculated.  相似文献   

10.

Abstract  

Monomeric Mn2+, Co2+ and Ni2+ complexes of tris(2-pyridyl)phosphine (P(2-py)3 were synthesized through the reaction of the hydrated metal(II) chlorides with P(2-py)3 in near-quantitative yields. The solid-state structure of the Mn complex was determined by single-crystal X-ray diffraction. All three complexes were tested as homogeneous catalysts for the oxidation of tetralin to α-tetralone with tert-butyl hydroperoxide (TBHP) as oxidant. The influences of temperature, solvent, catalyst molar ratio and time of the reaction on the catalyzed reactions were investigated.  相似文献   

11.
A new magnetically recoverable nanocatalyst designated as Fe3O4@SiO2@PTMS@Mel‐Naph‐VOcomplex was synthesize by covalent binding of a Schiff base ligand derived from melamine and 2‐hydroxy1naphtaldehyde on the surface of silica coated iron oxide magnetic nanoparticles followed by complexation with VO (acac)2. Characterization of the prepared nanocatalyst was accomplished with FT‐IR, XRD, SEM, HRTEM, VSM and atomic absorption techniques. It was found that the epoxidation of geraniol, trans‐2‐hexen‐1‐ol, 1‐octen‐3‐ol, norbornene, and cyclooctene is highly selective, affording quantitative yields of the corresponding epoxides with tert‐butyl hydroperoxide (TBHP) using Fe3O4@SiO2@Mel‐Naph‐VOcomplex as catalyst. High reaction yields, short reaction times, simple experimental and work up procedure, catalyst stability and excellent reusability even after five‐cycles of usage in the case of geraniol are some advantages of this research.  相似文献   

12.
The catalytic effect of VSi2 on initial stages of the liquid-phase oxidation of cyclooctene by molecular oxygen was studied. The vanadium disilicide influences on the oxidation process in the presence of hydroperoxide. VSi2 takes part in a radical formation stage by catalysis of hydroperoxide decomposition reaction. The catalyst was investigated before and after reaction using FTIR spectroscopy. From the data obtained, the kinetic model of the catalytic oxidation process was proposed and the equation for the reaction rate was derived. The equation has described all observed dependences of reaction rate on the concentration of reactants and content of catalyst.   相似文献   

13.
采用自由配体法将(1S,2S)-DPEN(1,2-diphenyl-1,2-ethylene-diamine)-Ru(TPP)2(TPP=三苯基膦,triphenylphosphine)配合物封装于NaY沸石分子筛超笼中,制备了(1S,2S)-DPEN-Ru(TPP)2/Y主客体材料(1S,2S)-DPEN=1,2-二苯基-1,2-乙二胺).采用等离子体发射光谱ICP、粉末X射线衍射(XRD)、紫外光谱(UV-Vis)、氮吸附等物理化学手段对所制备材料进行了表征.结果表明,(1S,2S)-DPEN-Ru(TPP)2配合物封装于Y型分子筛超笼中保持了原有的物理化学性能;作为苯乙酮不对称加氢催化剂,在优化条件下,苯乙酮的转化率可达100%,(R)-苯乙醇的对映体过量值(ee值)可达61.0%.该催化剂具有良好的稳定性和重复使用性.  相似文献   

14.
The texture of Cr2O3-K2O/Al2O3catalysts containing oxides of rare earth elements (REE) was studied. The catalysts are used for the synthesis of 2-methylthiophene by the reaction of H2S with n-pentane or piperilene. The heterocyclization of n-pentane is a consecutive reaction involving a step of dehydrogenation of initial hydrocarbon. At this step the texture of the catalyst affects the yield of 2-methylthiophene. The yield of 2-methylthiophene obtained from piperilene and I2S is independent of the catalyst texture.  相似文献   

15.
金国杰  郭杨龙  刘晓晖  姚伟  郭耘  卢冠忠 《化学学报》2006,64(19):1941-1946
制备了对丙烯直接气相环氧化具有优良催化性能的Ag-MoO3/ZrO2催化剂, 采用原位FT-IR技术研究了丙烯、环氧丙烷及丙烯和氧气混合气在载体和催化剂上的吸附及反应行为. 研究表明, 丙烯在ZrO2载体和20%Ag-4%MoO3/ZrO2催化剂上吸附后, 均不发生化学反应, 而环氧丙烷在ZrO2载体上吸附后于400 ℃发生开环反应, 在20%Ag-4%MoO3/ZrO2催化剂上吸附后于300 ℃发生开环反应. 当丙烯和氧气混合气在ZrO2载体上共吸附后, 随着反应温度从室温升高至400 ℃, 二者开始反应生成CO2和H2O; 混合气在20%Ag-4%MoO3/ZrO2催化剂上共吸附后于350 ℃开始反应. 对比非负载型Ag-MoO3催化剂的研究结果可见, ZrO2载体的存在使催化剂的活性下降的同时, 提高了对产物环氧丙烷的选择性.  相似文献   

16.
By using a novel, simple, and convenient synthetic route, enantiopure 6‐ethynyl‐BINOL (BINOL=1,1‐binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper‐catalyzed alkyne–azide cycloaddition (CuAAC) reaction. The polystyrene (PS)‐supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert‐butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson–Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N‐methyl morpholine N‐oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities.  相似文献   

17.
A γ-alumina-supported bimetallic Ru-Mo sulfide catalyst preparedvia precipitation from homogeneous solution (PFHS) has been used to effect the abstraction of H2 from H2S. The decomposition reaction was also carried out over Al2O3-supported RuS2 and MoS2 catalysts synthesizedvia PFHS. The performance of bimetallic system exceeded (ca. 40%) the simple additive activities of the constituent monometallic sulfide catalysts and about 2–3 times the individual activities of the monometallic sulfide samples, suggesting chemical synergism between Ru and Mo in the Ru-Mo catalyst. In particular, comparison with other catalysts in the literature showed that specimens preparedvia PFHS exhibited better activities than those from direct sulfidation of the metal oxide. Kinetic study over the Ru-Mo bimetallic sulfide catalyst in a quartz micro-reactor at 110 kPa and between 783–973 K revealed a 1st order dependency on H2S partial pressure and an activation energy of about 92 kJ mol−1. The irreversible adsorption of H2S on a coordinatively unsaturated site is thought to be the rate-limiting step.  相似文献   

18.
A series of 3-hydroperoxy-3,4,4,5,5-pentasubstituted-1,2-dioxolanes 2a-d were synthesized in good yield from the corresponding 3-hydroxy-1,2-dioxolanes by reaction with concentrated hydrogen peroxide in acetonitrile with p-toluenesulfonic acid as catalyst. The 3-hydroperoxy-1,2-dioxolanes were effective oxygen-atom transfer reagents for the oxidation of thioanisole, triethylamine and 2,3-dimethyl-2-butene to the sulfoxide, N-oxide and epoxide, respectively. The reactions occurred under mild conditions and were found to be of the second order overall. The second order rate constants (k2) were determined for oxidation of thioanisole by 2a-d in deuteriochloroform. For 2a , k2 values for N-oxidation and epoxidation were also measured. The 3-hydroperoxy-1,2-dioxolanes were found to be less reactive than the structurally similar cyclic α-azohydroperoxides but much more reactive than simple hydroperoxides. The mechanism of oxygen-atom transfer is postulated to occur via nucleophilic attack of the substrate on the terminal oxygen of the hydroperoxide. Intramolecular hydrogen bonding of the hydroperoxy proton to a dioxolane oxygen appears to account for the reaction order in aprotic media.  相似文献   

19.
Photocatalytic CO2 reduction using a ruthenium photosensitizer, a sacrificial reagent 1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (BI(OH)H), and a ruthenium catalyst were carried out. The catalysts contain a pincer ligand, 2,6-bis(alkylimidazol-2-ylidene)pyridine (CNC) and a bipyridine (bpy). The photocatalytic reaction system resulted in HCOOH as a main product (selectivity 70–80 %), with a small amount of CO, and H2. Comparative experiments (a coordinated ligand (NCMe vs. CO) and substituents (tBu vs. Me) of the CNC ligand in the catalyst) were performed. The turnover number (TONHCOOH) of carbonyl-ligated catalysts are higher than those of acetonitrile-ligated catalysts, and the carbonyl catalyst with the smaller substituents (Me) reached TONHCOOH=5634 (24 h), which is the best performance among the experiments.  相似文献   

20.
Product distribution and kinetic studies on the hydrosilylation of phenylacetylene by Ph3SiH, Ph2MeSiH, PhMe2SiH and Et3SiH were performed using bis‐[1,2‐diphenylphosphinoethane]norbornadienerhodium(I) hexafluorophosphate, 1, as catalyst. Pre‐equilibration of the catalyst with the acetylene produced hydrosilylations, pre‐equilibration with the silane did not. The catalyst showed a pronounced selectivity for cis‐addition to form β‐products, t‐PhCH­CHSiR3, unlike most hydrosilylation catalysts. The kinetic studies showed a hydrosilylation reaction that is zero order with respect to both acetylene and the silane, with a dependency upon catalyst concentration. The kobs value is directly influenced by the substituents on the silane: k(PhMe2SiH) > k (Et3SiH > k (Ph2MeSiH) > k (Ph3SiH). Intercalation of the catalyst in hectorite was not useful, since either no reaction occurred in non‐polar solvents, or extraction of the catalyst occurred in polar solvents to produce the same product distributions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号