首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 对于存在大量亲水疏油岩块的天然裂缝性油藏,自发渗吸是基质岩块和裂缝系统油水交换的重要驱动机制.对于一维渗吸问题,前期存在自相似解析解,后期可以用近似解析解描述,从而可以很方便地估算出岩块剩余油饱和度和岩块出油速率.本文研究了二维矩形岩块在不同边界条件下渗吸过程的近似解析解,通过引入特征长度,将二维岩块渗吸问题等效为一维,从而可以有效利用一维近似解析解来估算出二维岩块渗吸过程中剩余油饱和度和岩块出油速率随时间的变化.本文提出了一个新的混合特征长度,在渗吸前期取岩块面积与岩块开放边界长度之比;在渗吸后期,特征长度根据前期特征长度和Ma 等提出的特征长度按饱和度插值确定.通过数值检验比较了几种常见的特征长度取法和本文提出的混合特征长度取法,结果表明新的混合特征长度总体性能优于其他已有的特征长度取法,并且适用于本文列举的所有边界条件.  相似文献   

2.
The problem of hydraulic fracture formation in a porous medium is investigated in the approximation of small fracture opening and inertialess incompressible Newtonian fluid fracture flow when the seepage through the fracture walls into the surrounding reservoir is asymptotically small or large. It is shown that the system of equations describing the propagation of the fracture has self-similar solutions of power-law or exponential form only. A family of self-similar solutions is constructed in order to determine the evolution of the fracture width and length, the fluid velocity in the fracture, and the length of fluid penetration into the porous medium when either the fluid flow rate or the pressure as a power-law or exponential function of time is specified at the fracture entrance. In the case of finite fluid penetration into the soil the system of equations has only a power-law self-similar solution, for example, when the fluid flow rate is specified at the fracture entrance as a quadratic function of time. The solutions of the self-similar equations are found numerically for one of the seepage regimes.  相似文献   

3.
In this paper we exclude the scenario of the apparition of finite time singularity in the form of self-similar singularities in the ideal magnetohydrodynamic equations, assuming suitable integrability conditions on the vorticity and the magnetic field. We also consider the more refined possibility of asymptotically self-similar singularities, where the local classical solution converges to the self-similar profile as we approach the possible time of singularity. The scenario of asymptotically self-similar singularity is also excluded under suitable conditions on the profile. In the two-dimensional magnetohydrodynamics the magnetic field evolution equations reduce to a divergence free transport equation for a scalar stream function. This helps us to improve the above nonexistence theorems on the self-similar singularities, in the sense that we require merely weaker integrability conditions on the profile in order to prove the results.  相似文献   

4.
部分致密油井压后关井一段时间,压裂液返排率普遍低于30%,但是致密油气井产量反而越高,这与压裂液毛细管力渗吸排驱原油有关。然而,致密油储层致密,物性差,渗流机理复杂,尚没有形成统一的自发渗吸模型。本文基于油水两相非活塞式渗流理论,建立了压后闷井期间压裂液在毛细管力作用下自发渗吸进入致密油储层的数学模型,采用数值差分方法进行求解,并分析了相关影响因素。结果显示渗吸体积、渗吸前缘移动距离与渗吸时间的平方根呈线性正相关关系,与经典Handy渗吸理论模型预测结果一致,说明毛细管力自发渗吸模型可靠性较高。数值计算结果表明毛细管水相扩散系数是致密储层自发渗吸速率的主控参数,毛细管水相扩散系数越高,自发渗吸速率越大。毛细管水相扩散系数随着含水饱和度先增加后减小;随着束缚水饱和度、油相和水相端点相对渗透率增加而增加;随着相渗特征指数、油水黏度比和残余油饱和度增加而减小。该研究有助于深入认识致密油储层压裂液渗吸机理,对优化返排制度、提高致密油井产量具有重要意义。  相似文献   

5.
In the oil industry, dynamic spontaneous imbibition plays an important role in several flow processes in porous media. A numerical approach is developed to simulate dynamic spontaneous imbibition with variable inlet saturation and interfacial coupling. The inclusion of interfacial coupling effects invalidates the assumption that the interfaces (fluid/fluid and fluid/solid) act in the same way. The one-dimensional numerical simulation model is developed using a Lagrangian formulation discretized in time and saturation. The solution of the partial differential equations utilizes an iteration process that includes two material balance criteria to ensure the validity of the variable inlet saturation. Furthermore, an error analysis, the validation of the model and a sensitivity study on the optimal number of time steps and saturation grid cells are undertaken. The numerical simulation solution represents an accurate approach to investigate the effect of fluid and rock properties on dynamic spontaneous imbibition.  相似文献   

6.
Although a lot of research has been done in modeling the oil recovery from fractured reservoirs by countercurrent imbibition, less attention has been paid to the effect of the fracture fluid velocity upon the rate of oil recovery. Experiments are conducted to determine the effect of fracture flow rate upon countercurrent imbibition. A droplet detachment model is proposed to derive the effective water saturation in a thin boundary layer at the matrix–fracture interface. This effective boundary water saturation is a function of fluid properties, fluid velocity in the fracture and fracture width. For a highly water–wet porous medium, this model predicts an increase in the boundary water saturation with increase in fracture fluid velocity. The increase in boundary water saturation, in turn, increases the oil recovery rate from the matrix, which is consistent with the experimental results. The model also predicts that the oil recovery rate does not vary linearly with the boundary water saturation.  相似文献   

7.
Accurate models of multiphase flow in porous media and predictions of oil recovery require a thorough understanding of the physics of fluid flow. Current simulators assume, generally, that local capillary equilibrium is reached instantaneously during any flow mode. Consequently, capillary pressure and relative permeability curves are functions solely of water saturation. In the case of imbibition, the assumption of instantaneous local capillary equilibrium allows the balance equations to be cast in the form of a self-similar, diffusion-like problem. Li et al. [J. Petrol. Sci. Eng. 39(3) (2003), 309–326] analyzed oil production data from spontaneous countercurrent imbibition experiments and inferred that they observed the self-similar behavior expected from the mathematical equations. Others (Barenblatt et al. [Soc. Petrol. Eng. J. 8(4) (2002), 409–416]; Silin and Patzek [Transport in Porous Media 54 (2004), 297–322]) assert that local equilibirum is not reached in porous media during spontaneous imbibition and nonequilibirium effects should be taken into account. Simulations and definitive experiments are conducted at core scale in this work to reveal unequivocally nonequilbirium effects. Experimental in-situ saturation data obtained with a computerized tomography scanner illustrate significant deviation from the numerical local-equilibrium based results. The data indicates: (i) capillary imbibition is an inherently nonequilibrium process and (ii) the traditional, multi-phase, reservoir simulation equations may not well represent the true physics of the process.  相似文献   

8.
致密砂岩逆向渗吸作用距离实验研究   总被引:2,自引:1,他引:1  
中国致密油储量丰富, 但多数致密储层波及效率低, 衰竭开发效果较差. 逆向渗吸是致密油藏注水开发过程中的一种重要的提高采收率途径, 目前许多学者主要针对致密油藏渗吸采收率及其影响因素开展研究, 而对于渗吸作用距离(表征致密油藏渗吸作用范围)研究较少. 本文采用CT在线扫描装置建立了致密岩心逆向渗吸作用距离量化方法, 明确了逆向渗吸的作用范围, 进一步研究了流体压力、含水饱和度、岩心渗透率和表面活性剂对逆向渗吸作用距离的影响, 阐明了逆向渗吸作用距离与渗吸采收率的关系, 为提高致密油藏采收率提供指导. 研究结果表明, 渗透率为0.3 mD的致密岩心逆向渗吸作用距离尺度仅为1.25 ~ 1.625 cm; 5 MPa条件下渗透率为0.302 mD的岩心逆向渗吸作用距离为1.375 cm. 在本实验条件下, 流体压力和初始含水饱和度对致密岩心逆向渗吸作用距离的影响较小, 而渗透率和表面活性剂对致密岩心逆向渗吸作用距离的影响显著, 渗透率为0.784 mD的岩心逆向渗吸作用距离相较于渗透率为0.302 mD的岩心提高2.63倍. 逆向渗吸作用距离是渗吸采收率表征的重要参数, 决定了逆向渗吸作用的波及范围.   相似文献   

9.
10.
It is well known that multiphase flow in porous media exhibits hysteretic behaviour. This is caused by different fluid–fluid behaviour if the flux reverses. For example, for flow of water in unsaturated soils the process of imbibition and drainage behaves differently. In this paper we study a new model for hysteresis that extends the current playtype hysteresis model in which the scanning curves between drainage and imbibition are vertical. In our approach the scanning curves are non-vertical and can be constructed to approximate experimentally observed scanning curves. Furthermore our approach does not require any book-keeping when the flux reverses at some point in space. Specifically, we consider the problem of horizontal redistribution to illustrate the strength of the new model. We show that all cases of redistribution can be handled, including the unconventional flow cases. For an infinite column, our analysis involves a self-similar transformation of the equations. We also present a numerical approach (L-scheme) for the partial differential equations in a finite domain to recover all redistribution cases of the infinite column provided time is not too large.  相似文献   

11.
We have developed a Dynamic Pore-network model for Simulating Two-phase flow in porous media (DYPOSIT). The model is applicable to both drainage and imbibition processes. Employing improved numerical and geometrical features in the model facilitate a physically-based pore-scale simulator. This computational tool is employed to perform several numerical experiments (primary and main drainage, main imbibition) to investigate the current capillarity theory. Traditional two-phase flow formulations state that the pressure difference between the two phase is equal to the capillary pressure, which is assumed to be a function of saturation only. Many theoretical and experimental studies have shown that this assumption is invalid and the pressure difference between the two fluids is not only equal to the capillary pressure but is also related to the variation of saturation with time in the domain; this is referred to as the non-equilibrium capillarity effect. To date, non-equilibrium capillarity effect has been investigated mainly under drainage. In this study, we analyze the non-equilibrium capillarity theory under drainage and imbibition as a function of saturation, viscosity ratio, and effective viscosity. Other aspects of the dynamics of two-phase flow such as trapping and saturation profile are also studied.  相似文献   

12.
Butz  Ines  Herring  Anna 《Transport in Porous Media》2019,130(2):463-485

Growing plants under microgravity conditions in a space ship is essential for future long-term missions to supply needs for food and oxygen. Although plant growth modules for microgravity have been developed and tested for more than 40 years, creating optimal saturation conditions for plant growth in the absence of gravity still remains a challenge. In this study, we present results from a series of spontaneous imbibition experiments designed to approximate microgravity conditions by using density-matched fluid pairs. Porous media with patterned wettability characteristics are used to manipulate macroscopic fluid saturation and microscopic fluid interfacial configurations. These are compared to an additional experiment under Earth gravity, wherein we observe spontaneous imbibition of water into common potting soil. Patterning grains of different wettabilities under microgravity conditions proves to be an effective method to manipulate spatial distributions and saturations of fluids. These wettability patterns can be optimised to fine-tune residual fluid characteristics, e.g. non-wetting phase saturation, connectivity and interfacial area. Furthermore, we present tomographic evidence supporting previous work which was suggesting enhanced snap-off and disconnection of the gas phase in porous media under microgravity.

  相似文献   

13.
Water flow in a sandstone sample is studied during an experiment in situ in a neutron tomography setup. In this paper, a projection-based methodology for fast tracking of the imbibition front in 3D is presented. The procedure exploits each individual neutron 2D radiograph, instead of the tomographic-reconstructed images, to identify the 4D (space and time) saturation field, offering a much higher time resolution than more standard reconstruction-based methods. Based on strong space and time regularizations of the fluid flow, with an a priori defined space and time shape functions, the front shape is identified at each projection time step. This procedure aiming at a fast tracking the fluid advance is explored through two examples. The first one shows that the fluid motion that occurs during one single 180\(^{^{\circ }}\) scan can be resolved at 5 Hz with a sub-pixel accuracy whereas it cannot be unraveled with plain tomographic reconstruction. The second example is composed of 42 radiographs acquired all along a complete fluid invasion in the sample. This experiment uses the very same approach with the additional difficulty of large fluid displacement in between two projections. As compared to the classical approach based on full reconstructions at each invasion stage, the proposed methodology in the studied examples is roughly 300 times faster offering an enhanced time resolution.  相似文献   

14.
In the absence of capillarity the single-component two-phase porous medium equations have the structure of a nonlinear parabolic pressure (equivalently, temperature) diffusion equation, with derivative coupling to a nonlinear hyperbolic saturation wave equation. The mixed parabolic-hyperbolic system is capable of substaining saturation shock waves. The Rankine-Hugoniot equations show that the volume flux is continuous across such a shock. In this paper we focus on the horizontal one-dimensional flow of water and steam through a block of porous material within a geothermal reservoir. Starting from a state of steady flow we study the reaction of the system to simple changes in boundary conditions. Exact results are obtainable only numerically, but in some cases analytic approximations can be derived. When pressure diffusion occurs much faster than saturation convection, the numerical results can be described satisfactorily in terms of either saturation expansion fans, or isolated saturation shocks. At early times, pressure and saturation profiles are functionally related. At intermediate times, boundary effects become apparent. At late times, saturation convection dominates and eventually a steady-state is established. When both pressure diffusion and saturation convection occur on the same timescale, initial simple shock profiles evolve into multiple shocks, for which no theory is currently available. Finally, a parameter-free system of equations is obtained which satisfactorily represents a particular case of the exact equations.  相似文献   

15.
The problem of hydraulic fracture crack propagation in a porous medium is considered. The fracture is driven by an incompressible viscous fluid with a power-law rheology of the pseudoplastic type. The fluid seepage is described by an equation generalizing the Darcy law in the hydraulic approximation. It is shown that the system of governing equations has a power-law self-similar solution, whereas, in the limiting cases of low and high fluid saturation in the porous medium, there are some families of power-law or exponential self-similar solutions. The complete self-similar solution is constructed. The effect of the nonlinear rheology of the fracturing fluid on the behavior of the solution is studied. The problem is solved analytically for an arbitrary boundary condition at the crack inlet when the viscous stresses in the non-Newtonian fluid are close to a constant.  相似文献   

16.
H. Baur 《Rheologica Acta》1989,28(4):333-349
Relaxation processes in the glass transition region, especially the recovery of the volume and the physical ageing of polymers, do not follow the common (linear) theory of relaxation. On the contrary, they show a development which depends on the previous history, may be non-monotonous and requires a relaxation time that may have negative values and a pole. These phenomena can be explained if the single relaxation time is replaced by a spectrum of relaxation times and the relaxation times are supposed to be subjected to a feedback via certain structure- and temperature-parameters (as, for instance, in the KAHR-theory).However, the feedback and a pole of the relaxation time arise already for a single internal degree of freedom by themselves, if, in the non-equilibrium thermodynamics, a dynamic and a static temperature are strictly differentiated. In the case of the relaxation of the diffusive translational motion of the molecules in the glass transition region the dynamic temperature is identical with the socalled fictive temperature introduced by Tool.With regard to the relaxation of the volume three different temperature regions must be distinguished: A fluid region at high temperatures where the relaxation is controlled by the free volume and complies with the linear theory at least approximately; a glass-like region at low temperatures where the relaxation is controlled by the thermal expansivity of the free volume and where, under certain conditions, the statements set up by Davies and Jones are valid; an intermediate region (the glass transition region) where the free volume as well as its coefficient of expansivity are decisive. In that region the effective relaxation time of the volume may have a pole and the dynamic temperature may approach its equilibrium value by discontinuous jumps or in a chaotic manner.Dedicated to Professor Dr. J. Meissner (ETH Zürich) on the occasion of his 60th birthday  相似文献   

17.
We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.  相似文献   

18.
An approximate analytical solution is provided for one-dimensional, counter- current, spontaneous imbibition of a wetting phase (water) into a semi-infinite porous medium. The solution is based on the assumption that a similarity solution exists for the displacement process. This assumption, in turn, rests on the assumption that the set of relative permeability and capillary pressures curves are unique functions of saturation and do not depend on the nature of the displacement. It further rests on the assumption that the saturation at the imbibition face does not vary with time. It is demonstrated that the solution is in agreement with results obtained from experiments and also numerical analyses of these experiments. The experiments utilize cylindrical samples with the radial surface and one end-face sealed, and with counter-current imbibition occurring at the open end-face. The stage of the experiment that is modeled by the present solution is the period before the imbibition front contacts the sealed end-face. An important finding of the present analysis is that the pressure upstream of the advancing invasion front is a constant. A second, improved solution is also presented; this solution is an iterative, series solution of an integral-differential equation. It converges to a stable solution in very few terms.  相似文献   

19.
Self-similar solutions arise naturally as special solutions of system of partial differential equations (PDEs) from dimensional analysis and, more generally, from the invariance of system of PDEs under scaling of variables. Usually, such solutions do not globally satisfy imposed boundary conditions. However, through delicate analysis, one can often show that a self-similar solution holds asymptotically in certain identified domains. In the present paper, it is shown that self-similar phenomena can be studied through use of many ideas arising in the study of dynamical systems. In particular, there is a discussion of the role of symmetries in the context of self-similar dynamics. We use the method of Lie group invariance to determine the class of self-similar solutions to a problem involving plane and radially symmetric flows of a relaxing non-ideal gas involving strong shocks. The ambient gas ahead of the shock is considered to be homogeneous. The method yields a general form of the relaxation rate for which the self-similar solutions are admitted. The arbitrary constants, occurring in the expressions for the generators of the local Lie group of transformations, give rise to different cases of possible solutions with a power law, exponential or logarithmic shock paths. In contrast to situations without relaxation, the inclusion of relaxation effects imply constraint conditions. A particular case of the collapse of an imploding shock is worked out in detail for radially symmetric flows. Numerical calculations have been performed to determine the values of the self-similarity exponent and the profile of the flow variables behind the shock. All computations are performed using the computation package Mathematica.  相似文献   

20.
Thermocapillary flows of a fluid in a lamina with a rigid lower wall and a free upper surface, along which the temperature gradient is given in the radial direction, are investigated for large Marangoni numbers. Self-similar solutions which describe the axisymmetric flow regimes of a fluid without the circumferential velocity component are constructed numerically and asymptotically for a system of Prandtl equations. It is shown that a pair of new self-similar flow regimes of a fluid with rotation branches off from the regimes obtained. The new regimes ere calculated numerically and asymptotically. Rostov State University, Rostov-on-Don 344090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 137–142, May–June, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号