首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The core of a tokamak discharge often undergoes periodic relaxation oscillations, sawteeth, as the steepening current and temperature profiles are flattened by fast reconnection events. Careful analysis of the electron temperature evolution over this cycle gives an estimate of the energy dissipated in the electrons during reconnection and a measure of the transport characteristic (energy flux versus temperature gradient) over the range of parameters occurring over the remainder of the cycle. The energy dissipated is consistent with estimates of the loss of poloidal magnetic energy. The transport characteristics exhibit a wide range of behaviors.  相似文献   

2.
本文利用一维圆柱等离子体输运编码(TRANPY),编制了模拟锯齿振荡的大型编码(SAWMOD)。对锯齿振荡的研究,我们选用了两种具有代表性的理论模型:重联模型和湍流模型,后者特别适用于低qa放电的锯齿特性研究。重联模型的锯齿振荡是由于磁力线的完全重联引起的,而湍流模型的锯齿振荡是因为微观湍流或磁力线的随机化而产生的。最后,我们将HL─1装置的一次典型高密放电的参数代入(SAWMOD)编码,运算结果表明,重联模型和湍流模型均能解释实验观测的锯齿现象,理论模拟与实验结果符合较好。  相似文献   

3.
Sawtooth oscillations with post-cursor were observed in LHCD plasma on HT-7 tokamak. The mode exists and decays gradually after the crash, which implies that the magnetic reconnection is incomplete and the central safety factor remains below unity after the crash. From results of the singular value decomposition (SVD) and tomographic reconstructions describing the magnetic surface structures in the crash, it was found that the m/n=1/1 mode survives in the crash. It is shown that, the appearance of the preservation of this mode is inconsistent with the secondary reconnection theory, and we conjecture that the evolving of this mode may be understood with the stochastic field model.  相似文献   

4.
HL—1装置的硬X射线锯齿振荡   总被引:2,自引:2,他引:0  
软X射线的锯齿振荡,在ST,Pulsator和TEXT等装置上已观测到;在Pulsator和PLT上已研究了硬X射线锯齿波。PLT和Pulsator观测结果为,产生的硬X射线锯齿振荡为反锯齿和内破裂的软X射线锯齿相对应。Pulsator的硬X射线锯齿和软X射线锯齿一样,这种趋势一直持继到放电结束,而硬X射线峰值发生在软X射线内破裂后大约200μs。PLT的硬X射线锯齿比软X射线锯齿延迟1至5ms。本工作目的是在内破裂后,从软、硬X射线锯齿波对比,观测硬X射线到达峰值这段延迟时间,并以此来量度逃逸电子约束时间。  相似文献   

5.
High temporal and spatial resolution two-dimensional (2D) images of electron temperature fluctuations were employed to study the sawtooth oscillation in the Toroidal Experiment for Technically Oriented Research tokamak plasmas. The 2D images are directly compared with the expected 2D patterns of the plasma pressure (or electron temperature) from various theoretical models. The observed experimental 2D images are only partially in agreement with the expected patterns from each model: The image of the initial reconnection process is similar to that of the ballooning mode model. The intermediate and final stages of the reconnection process resemble those of the full reconnection model. The time evolution of the images of the hot spot or island is partially consistent to those from the full reconnection model but is not consistent with those from the quasi-interchange model.  相似文献   

6.
7.
The impurity ion temperature evolution has been measured during three types of impulsive reconnection events in the Madison Symmetric Torus reversed field pinch. During an edge reconnection event, the drop in stored magnetic energy is small and ion heating is observed to be limited to the outer half of the plasma. Conversely, during a global reconnection event the drop in stored magnetic energy is large, and significant heating is observed at all radii. For both kinds of events, the drop in magnetic energy is sufficient to explain the increase in ion thermal energy. However, not all types of reconnection lead to ion heating. During a core reconnection event, both the stored magnetic energy and impurity ion temperature remain constant. The results suggest that a drop in magnetic energy is required for ions to be heated during reconnection, and that when this occurs heating is localized near the reconnection layer.  相似文献   

8.
利用HCN激光多道干涉仪,首次在HL-1M装置上在低混杂电流驱动期间观测到密度锯齿现象。分析表明,密度锯齿不是通常的q=1锯齿,而是低混杂波与杂质共同作用下的产生的q〉1的锯齿。  相似文献   

9.
Quanming Lu 《中国物理 B》2022,31(8):89401-089401
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection, the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region, in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm's law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth's magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.  相似文献   

10.
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.  相似文献   

11.
Strong electron pressure anisotropy has been observed upstream of electron diffusion regions during reconnection in Earth's magnetotail and kinetic simulations. For collisionless antiparallel reconnection, we find that the anisotropy drives the electron current in the electron diffusion region, and that this current is insensitive to the reconnection electric field. Reconstruction of the electron distribution function within this region at enhanced resolutions reveals its highly structured nature and the mechanism by which the pressure anisotropy sets the structure of the region.  相似文献   

12.
本文介绍了一种频率连续可调的等离子体辐射源。它是利用波与相对论等离子体前沿相互作用产生多普勒频移来产生辐射的。针对TE波与圆波导内低密度等离子体前沿相互作用,本文推导了所产生的辐射脉冲的上移频率、反射效率、传输效率和脉冲长度等计算公式。  相似文献   

13.
The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.  相似文献   

14.
不可压缩等离子体的2维磁场重联模型   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种2维磁场重联模型。磁场重联过程中的电荷分离在等离子体中产生静电场,等离子体在电场中的漂移运动可以解释阿尔芬速度量级的出流。该磁场重联模型给出如下结论:Sweet-Parker模型描述的重联率强烈地依赖于电子质量与离子质量之比;反常电阻率正比于离子惯性长度和电流片宽度比值的平方; 相对论效应和高温等离子体中电子-正电子对的产生可以提高重联率; 电磁波的激发对于磁能的损耗是必要的。  相似文献   

15.
This article is concerned with a review of the prominent magnetohydrodynamic theories proposed to date to explain magnetic field reconnection. These theories fall into three categories: (i) resistive tearing-mode instability, (ii) steady externally driven processes, (iii) nonsteady externally driven processes. The purpose of this article is to give on the analytical side - (i) a detailed discussion including a critical appraisal of the existing pr ominent theories of magnetic reconnection, (ii) a further elaboration and more correct versions and extensions of some of the existing theories of magnetic reconnection, and a review of the laboratory and computational work on the problem. The controversies that surround the application of these theories to problems involving explosive releases of magnetic energy are discussed.  相似文献   

16.
The cause for sudden reconnection in reversed field pinch plasmas is determined experimentally for two cases: large reconnection events (the sawtooth crash) and small reconnection events during improved confinement. We measure the term in the MHD equations which represents the driving (or damping) of edge tearing modes due to the axisymmetric magnetic field. The term is negative for large reconnection events (the modes are stable, implying that reconnection may be driven by nonlinear coupling to other modes) and positive for small reconnection events (modes are unstable, reconnection is spontaneous).  相似文献   

17.
A correlation is explored between the presence of energetic particle modes (EPM) and long-period sawtooth oscillations in tokamak plasmas heated by rf waves. The eventual crash of these sawteeth is explained in terms of the loss of the stabilizing fast particles due to the EPM. The absence of long-period sawteeth in high q(a) discharges is explained in terms of ion loss due to toroidal Alfven eigenmodes.  相似文献   

18.
一、引言 对电子回旋频率和等离子体频率的辐射研究表明,在HL-1装置的低密度放电过程中,存在着相对论电子束。本实验中,用一个在HL-1装置赤道面上垂直于纵向磁场方向的天线,观测了频率小于等离子体频率ω_(pe)的X波段的微波辐射。发现在这个频段除了可以接收到强的稳态超热辐射外,在一定的密度范围内,还能观测到幅度很大的反锯齿振荡。它们和软X射线锯齿,等离子体密度有一定的关系。下面将给出这些实验结果。  相似文献   

19.
《Physics letters. A》2020,384(36):126915
The complex symbiotic relationship in the industrial symbiosis network (ISN) may cause new risks for firms. In view of this problem, previous studies mainly regard the ISN as a static system, without considering the adaptive behavior of firms. This paper establishes a risk propagation model of the ISN based on the change of firm state, proposes four kinds of reconnection strategies to model the adaptive behavior, and uses numerical simulation to investigate the effect of adaptive behavior on risk propagation. The results demonstrate that all the reconnection strategies play an inhibitory role in the risk propagation. Therein, the effectiveness of PP strategy is the best, followed by RR strategy, and DP (SP) strategy. In any case, the effect of reconnection strategies on risk propagation will improve with the increase of the disconnection probability and network resilience. Additionally, the more decentralized weight distribution will weaken the inhibition of adaptive behavior on risk propagation.  相似文献   

20.
A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号