首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. D. Avrorin  A. V. Avrorin  V. M. Aynutdinov  R. Bannasch  I. A. Belolaptikov  V. B. Brudanin  N. M. Budnev  I. A. Danilchenko  S. V. Demidov  G. V. Domogatsky  A. A. Doroshenko  R. Dvornicky  A. N. Dyachok  Zh.-A. M. Dzhilkibaev  L. Fajt  S. V. Fialkovsky  R. R. Gafarov  O. N. Gaponenko  K. V. Golubkov  T. I. Gress  Z. Honz  K. G. Kebkal  O. G. Kebkal  K. V. Konishchev  A. V. Korobchenko  A. P. Koshechkin  F. K. Koshel  A. V. Kozhin  V. F. Kulepov  D. A. Kuleshov  M. V. Milenin  R. A. Mirgazov  E. A. Osipova  A. I. Panfilov  L. V. Pan’kov  E. N. Pliskovsky  M. I. Rozanov  E. V. Rjabov  B. A. Shaybonov  A. A. Sheifler  M. D. Shelepov  A. V. Skurihin  O. V. Suvorova  V. A. Tabolenko  B. A. Tarashchansky  S. A. Yakovlev  A. V. Zagorodnikov  V. L. Zurbanov 《Journal of Experimental and Theoretical Physics》2017,125(1):80-90
We have analyzed the neutrino events recoded in the deep-water neutrino experiment NT200 in Lake Baikal in five years of observations toward dark dwarf spheroidal galaxies (dSphs) in the southern hemisphere and the Large Magellanic Cloud (LMC). This analysis completes the series of works based on NT200 data in the search for a dark matter annihilation signal in astrophysical objects. We have found no significant excess in the number of observed events relative to the expected background from atmospheric neutrinos in all tested directions, in 22 dSphs and the LMC. For a sample of five selected dwarf galaxies we have performed a joint analysis of the data by the maximum likelihood method. We have obtained a correspondence of the observational data to the null hypothesis about the presence of only background events and established 90% confidence-level upper limits for the annihilation cross sections of dark matter particles with a mass from 30 GeV to 10 TeV in several annihilation channels both in the joint analysis of the selected sample of galaxies and in the analysis toward the LMC. The strongest constraints at a level of 7 × 10–21 cm3 s–1 have been obtained for the direction toward the LMC in the channel of annihilation into a pair of neutrinos.  相似文献   

2.
We discuss the possibility that the recent detection of 511 keV gamma rays from the galactic bulge, as observed by INTEGRAL, is a consequence of low mass (1-100 MeV) particle dark matter annihilations. We discuss the type of halo profile favored by the observations as well as the size of the annihilation cross section needed to account for the signal. We find that such a scenario is consistent with the observed dark matter relic density and other constraints from astrophysics and particle physics.  相似文献   

3.
As the largest mass concentrations in the local Universe, nearby clusters of galaxies and their central galaxies are prime targets in searching for indirect signatures of dark matter annihilation (DMA). We seek to constrain the dark matter annihilation emission component from multi-frequency observations of the central galaxy of the Virgo cluster. The annihilation emission component is modeled by the prompt and inverse-Compton gamma rays from the hadronization of annihilation products from generic weakly interacting dark matter particles. This component is fitted to the excess of the observed data above the spectral energy distribution (SED) of the jet in M87, described with a best-fit synchrotron-self-Compton (SSC) spectrum. While this result is not sufficiently significant to claim a detection, we emphasize that a dark matter “double hump signature” can be used to unambiguously discriminate the dark matter emission component from the variable jet-related emission of M87 in future, more extended observation campaigns.  相似文献   

4.
A search for a very-high-energy (VHE; ≥100 GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r~45-150 pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) γ-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual γ-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section (σv) as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of ~1 TeV, values for (σv) above 3×10(-25) cm(3)?s(-1) are excluded for the Einasto density profile.  相似文献   

5.
Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of weakly interacting massive particles based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-Ray Space Telescope. We exclude generic weakly interacting massive particle candidates annihilating into bb with a mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+ τ-, these limits become 19, 13, and 80 GeV, respectively.  相似文献   

6.
Structure formation with cold dark matter (CDM) predicts halos with a central density cusp, which are observationally disfavored. If CDM particles have an annihilation cross section sigmav approximately 10(-29)(m/GeV) cm(2), then annihilations will soften the cusps. We discuss plausible scenarios for avoiding the early Universe annihilation catastrophe that could result from such a large cross section. The predicted scaling of core density with halo mass depends upon the velocity dependence of sigmav, and s-wave annihilation leads to a core density nearly independent of halo mass, which seems consistent with observations.  相似文献   

7.
The energy and angular resolution of a liquid xenon calorimeter for gamma rays in the GeV region is studied by a Monte-Carlo simulation. For a size of (70 cm)3, the energy resolution becomes as good as 0.2 % (r.m.s) at 10 GeV. The angular resolution is order of 1° (median angle) at several GeV without using the pair converter separated from the main body of the calorimeter. An effective SΩ of 1 m2sr is attainable. These factors meet the conditions required for observation of line gamma rays emerging from the annihilation of a sort of hypothetical dark matter.  相似文献   

8.
If the dark matter (DM), which is considered to constitute most of the mass of galaxies, is made of supersymmetric particles, the central region of our Galaxy should emit gamma rays produced by their annihilation. We use detailed models of the Milky Way to make accurate estimates of continuum gamma-ray fluxes. We argue that the most important effect, which was previously neglected, is the compression of the dark matter due to the infall of baryons to the galactic center: it boosts the expected signal by a factor 1000. To illustrate this effect, we computed the expected gamma fluxes in the minimal supergravity scenario. Our models predict that the signal could be detected at high confidence levels by imaging atmospheric C erenkov telescopes assuming that neutralinos make up most of the DM in the Universe.  相似文献   

9.
Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratory.  相似文献   

10.
For nearly a century, more mass has been measured in galaxies than is contained in the luminous stars and gas. Through continual advances in observations and theory, it has become clear that the dark matter in galaxies is not comprised of known astronomical objects or baryonic matter, and that identification of it is certain to reveal a profound connection between astrophysics, cosmology, and fundamental physics. The best explanation for dark matter is that it is in the form of a yet undiscovered particle of nature, with experiments now gaining sensitivity to the most well-motivated particle dark matter candidates. In this article, I review measurements of dark matter in the Milky Way and its satellite galaxies and the status of Galactic searches for particle dark matter using a combination of terrestrial and space-based astroparticle detectors, and large scale astronomical surveys. I review the limits on the dark matter annihilation and scattering cross sections that can be extracted from both astroparticle experiments and astronomical observations, and explore the theoretical implications of these limits. I discuss methods to measure the properties of particle dark matter using future experiments, and conclude by highlighting the exciting potential for dark matter searches during the next decade, and beyond.  相似文献   

11.
We consider dark matter annihilation into standard model particles and show that the least detectable final states, namely, neutrinos, define an upper bound on the total cross section. Calculating the cosmic diffuse neutrino signal, and comparing it to the measured terrestrial atmospheric neutrino background, we derive a strong and general bound. This can be evaded if the annihilation products are dominantly new and truly invisible particles. Our bound is much stronger than the unitarity bound at the most interesting masses, shows that dark matter halos cannot be significantly modified by annihilations, and can be improved by a factor of 10-100 with existing neutrino experiments.  相似文献   

12.
We present a conformal gravity fit to the 20 largest of a sample of 110 spiral galaxies. We identify the presence of a universal quadratic potential V(κ)(r)=-κc2r2/2 with κ=9.54×10??? cm?2 induced by cosmic inhomogeneities. When V(κ)(r) is taken in conjunction with both a universal linear potential V(γ?)(r)=γ?c2r/2 with γ?=3.06×10?3? cm?1 generated by the homogeneous cosmic background and the contribution generated by the local luminous matter in galaxies, the theory then accounts for the rotation curve systematics observed in the entire 110 galaxies, without the need for any dark matter whatsoever. Our study suggests that using dark matter may be nothing more than an attempt to describe global effects in purely local galactic terms. With V(κ)(r) being negative, galaxies can only support bound orbits up to distances of order γ?/κ=100kpc, with global physics imposing a limit on the size of galaxies.  相似文献   

13.
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a \(\mathbb {Z}_2\) symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above \(\sim \)1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.  相似文献   

14.
In this Letter we study pair annihilation processes of dark matter (DM) in the Universe, in the case that the DM is an electroweak gauge nonsinglet. In the current Universe, in which the DM is highly nonrelativistic, the nonperturbative effect may enhance the DM annihilation cross sections, especially for that to two photons, by several orders of magnitude. We also discuss sensitivities in future searches for anomalous gamma rays from the galactic center, which originate from DM annihilation.  相似文献   

15.
Annihilating dark matter (DM) has been discussed as a possible source of gamma rays from the galactic center and as a contribution to the extragalactic gamma-ray background. Assuming universality of the density profile of DM halos, we show that it is quite unlikely that DM annihilation is a main constituent of extragalactic gamma-ray background, without exceeding the observed gamma-ray flux from the galactic center. This argument becomes stronger when we include enhancement of the density profiles by supermassive black holes or baryon cooling. The presence of a substructure may loosen the constraint, but only if a very large cross section as well as the rather flat profile are realized.  相似文献   

16.
Recent results from the CoGeNT Collaboration (as well as the annual modulation reported by DAMA/LIBRA) point toward dark matter with a light (5-10 GeV) mass and a relatively large elastic scattering cross section with nucleons (σ10−40 cm2). In order to possess this cross section, the dark matter must communicate with the Standard Model through mediating particles with small masses and/or large couplings. In this Letter, we explore with a model-independent approach the particle physics scenarios that could potentially accommodate these signals. We also discuss how such models could produce the gamma rays from the Galactic Center observed in the data of the Fermi Gamma-Ray Space Telescope. We find multiple particle physics scenarios in which each of these signals can be accounted for, and in which the dark matter can be produced thermally in the early Universe with an abundance equal to the measured cosmological density.  相似文献   

17.
The results of a neutrino experiment that involved 24.12 yr of live time of observation of muons from the lower Earth’s hemisphere with the aid of the Baksan Underground Scintillator Telescope are presented. In the problem of searches for a signal from the annihilation of dark matter in the Sun, an upper limit on the cross section for the elastic scattering of a weakly interacting massive particle (WIMP) on a nucleon was obtained at a 90% confidence level from an analysis of data accumulated within 21.15 yr of live time of observation. A neutralino in a nonminimal supersymmetric theory was considered for a WIMP. The best limit at the Baksan Underground Scintillator Telescope on the cross section for spin-dependent neutralino interactionwith a proton corresponds to 3×10?4 pb for the neutralino mass of 210 GeV/c 2. This limit is three orders of magnitude more stringent than similar limits obtained in experiments that detected directly WIMP scattering on target nuclei.  相似文献   

18.
The Galactic positrons, as observed by their annihilation gamma-ray line at 0.511 MeV, are difficult to account for with astrophysical sources. It has been proposed that they are produced instead by dark matter annihilation or decay in the inner Galactic halo. To avoid other constraints, these processes are required to occur "invisibly," such that the eventual positron annihilation is the only detectable signal. However, electromagnetic radiative corrections to these processes inevitably produce real gamma rays ("internal bremsstrahlung"); this emission violates COMPTEL and EGRET constraints unless the dark matter mass is less than about 20 MeV.  相似文献   

19.
We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.  相似文献   

20.
We have made preliminary measurements of positronium (Ps) formation cross sections for 9 to 452 eV positrons scattered from Ar atoms and for 1 to 20 eV positrons scattered from K atoms. Our experimental approach involves setting lower and upper limits on Ps formation cross sections using a combination of (1) the detection of the coincidences of 511 keV annihilation gamma rays produced by the decay of para-Ps and by the interaction of ortho-Ps with the wall of the scattering cell in which the Ps is formed, and (2) the determination of scattering cross sections associated with the measured transmission of the positron beam through the gas in our scattering cell with the angular discrimination of our apparatus deliberately made as poor as possible. The constraints placed by these lower and upper limits are used to check for consistency with prior experimental and theoretical results for Ar and to provide the first measurements of Ps formation cross sections for K, which are compared with available theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号