首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
The 6.7 and 12.2 GHz masers, corresponding to the 5(1) → 6(0)A+ and 2(0) → 3(-1)E transitions in methanol (CH3OH), respectively, are among the brightest radio objects in the sky. We present calculations for the sensitivity of these and other transitions in the ground state of methanol to a variation of the proton-to-electron mass ratio. We show that the sensitivity is greatly enhanced due to a cancellation of energies associated with the hindered internal rotation and the overall rotation of the molecule. We find sensitivities of K(μ) = -42 and K(μ) = -33, for the 5(1) → 6(0)A+ and 2(0) → 3(-1)E transitions, respectively. The sensitivities of other transitions in the different isotopologues of methanol range from -88 to 330. This makes methanol a sensitive probe for spatial and temporal variations of the proton-to-electron mass ratio.  相似文献   

2.
Existing limits on the nonradiative decay of one neutrino to another plus a massless particle (e.g., a singlet Majoron) are very weak. The best limits on the lifetime to mass ratio come from solar neutrino observations and are tau/m greater, similar 10(-4) s/eV for the relevant mass eigenstate(s). For lifetimes even several orders of magnitude longer, high-energy neutrinos from distant astrophysical sources would decay. This would strongly alter the flavor ratios from the phi(nu(e)):phi(nu(mu)):phi(nu(tau))=1:1:1 expected from oscillations alone and should be readily visible in the near future in detectors such as IceCube.  相似文献   

3.
X-ray studies of stellar mass black holes in X-ray binaries and mass-accreting supermassive black holes in Active Galactic Nuclei have achieved a high degree of maturity and have delivered detailed information about the astrophysical sources and the physics of black hole accretion. In this article, I review recent progress made towards using the X-ray observations for testing the “Kerr hypothesis” that the background spacetimes of all astrophysical quasi-stationary black holes are described by the Kerr metric. Although the observations have indeed revealed clear evidence for relativistic effects in strong-field gravity, quantitative tests of the Kerr hypothesis still struggle with theoretical and practical difficulties. In this article, I describe several recently introduced test metrics and review the status of constraining the background spacetimes of mass accreting stellar mass and supermassive black holes with these test metrics. The main conclusion of the discussion is that astrophysical uncertainties are large compared to the rather small observational differences between the Kerr and non-Kerr metrics precluding quantitative constraints on deviations from the Kerr metric at this point in time. I conclude with discussing future progress enabled by more detailed numerical simulations and by future X-ray spectroscopy, timing, polarimetry, and interferometry missions.  相似文献   

4.
Testing general relativity with atom interferometry   总被引:1,自引:0,他引:1  
The unprecedented precision of atom interferometry will soon lead to laboratory tests of general relativity to levels that will rival or exceed those reached by astrophysical observations. We propose such an experiment that will initially test the equivalence principle to 1 part in 10(15) (300 times better than the current limit), and 1 part in 10(17) in the future. It will also probe general relativistic effects - such as the nonlinear three-graviton coupling, the gravity of an atom's kinetic energy, and the falling of light - to several decimals. In contrast with astrophysical observations, laboratory tests can isolate these effects via their different functional dependence on experimental variables.  相似文献   

5.
Subhendra Mohanty 《Pramana》1998,51(1-2):229-237
I summarize some astrophysical phenomenon like gamma ray bursters, astrophysical proof of the existence of blackholes, Active galactic nuclei — as high energy neutrino sources, and some unsolved issues in supernova. I touch on the aspects where novel particle properties (like neutrino mass and magnetic moment) are invoked to understand the astronomical observations.  相似文献   

6.
Light propagating in an inhomogeneous medium does not travel in straight lines. Light rays wander; they are focused, magnified and dispersed as they travel through an inhomogeneous medium. Such deflections are familiar to physicists. They are the stuff of optics. On cosmic scales light is 'deflected' in a more profound way, tracing inhomogeneities in the underlying space-time. The meandering of light rays as they propagate through the Universe encodes unique information about variations in the space-time metric. General relativity tells us these variations are impressed on the metric by inhomogeneities in the matter distribution. As a result, this 'gravitational lensing' provides information about the distribution of mass in the Universe. In this work we review briefly the main features of gravitational lensing, with an emphasis on observable effects. Remarkable progress has been made in lensing observations since 1990. We discuss some aspects of this rapid development, commenting especially on astrophysical topics where lensing studies have had a major impact. We suggest that gravitational lensing is now a standard part of the astrophysical toolkit, akin in some ways to photometry. We conclude with a discussion of areas in which lensing studies will have a strong impact in years to come, and comment on technical requirements for these future studies.  相似文献   

7.
Transition wavelengths on a large set of H2 Lyman and Werner band spectral lines have been obtained at an accuracy of 5 x 10(-8), using a narrow band tunable extreme ultraviolet laser. The data are used to determine a constraint on a possible cosmological variation of the proton-to-electron mass ratio (mu=Mp/me) from a comparison with highly redshifted spectral data of quasistellar objects, yielding a fractional change in the mass ratio of Deltamu/mu=-0.5+/-3.6 x 10(-5) (2sigma), which would correspond to a temporal change of d/dt(Deltamu/mu)=-0.4+/-3.0 x 10(-15) per year (2sigma) if a linear cosmological expansion model is assumed.  相似文献   

8.
Within the Minimal Supersymmetric Standard Model (MSSM) we systematically investigate the bounds on the mass of the lightest neutralino. We allow for non-universal gaugino masses and thus even consider massless neutralinos, while assuming in general that R-parity is conserved. Our main focus is on laboratory constraints. We consider collider data, precision observables, and also rare meson decays to very light neutralinos. We then discuss the astrophysical and cosmological implications. We find that a massless neutralino is allowed by all existing experimental data and astrophysical and cosmological observations.  相似文献   

9.
We report a limit on the fractional temporal variation of the proton-to-electron mass ratio as 1/(m(P)/m(e)) partial differential/partial differential(t)(m(P)/m(e))=(-3.8+/-5.6) x 10(-14) yr(-1), obtained by comparing the frequency of a rovibrational transition in SF6 with the fundamental hyperfine transition in Cs. The SF6 transition was accessed using a CO2 laser to interrogate spatial 2-photon Ramsey fringes. The atomic transition was accessed using a primary standard controlled with a Cs fountain. This result is direct and model-free.  相似文献   

10.
夏江帆  张军  张杰 《物理学报》2001,50(5):994-1000
采用当前最先进的激光装置与物质相互作用,可以获得与天体物理过程中相同或相似的条件,并进而开展利用激光等离子体模拟天体物理现象的实验.然而,激光等离子体为微米空间尺度、纳秒存活时间,而天体物理对象则为宇宙学的极大的时间与空间尺度,对在物理上和实际操作上将这两种表面上存在巨大差异的物理过程对应起来从而利用激光等离子体研究天体物理过程的可能性进行了讨论,特别是对利用国内的激光装置开展模拟实验的可行性进行了讨论 关键词: 超强激光 实验室天体物理学 标度变换 流体动力学  相似文献   

11.
Cluster measurements at the bow shock, the magnetosheath, and the magnetospheric boundary layer are used to derive ion-pressure equations for hot anisotropic plasmas. It is demonstrated that both perpendicular and parallel ion pressures are well approximated by polybaric expressions is proportional to N(gamma)B(kappa), where N is the plasma density, B is the magnetic field, gamma is in the range 0.5 to 2, and kappa is between -2 and 0. The parameters derived from observations are distinctively different from those predicted by double-adiabatic theory and are shown to hold for pressure variations over 4 orders of magnitude and for a range of plasma beta (ratio of kinetic/magnetic pressures) between 10(-4) and 10. The results are relevant for simulations and theories of astrophysical, solar, interplanetary, and magnetospheric processes based on MHD equations.  相似文献   

12.
Explosive astrophysical transients at cosmological distances can be used to place precision tests of the basic assumptions of relativity theory, such as Lorentz invariance, the photon zero-mass hypothesis, and the weak equivalence principle (WEP). Signatures of Lorentz invariance violations (LIV) include vacuum dispersion and vacuum birefringence. Sensitive searches for LIV using astrophysical sources such as gamma-ray bursts, active galactic nuclei, and pulsars are discussed. The most direct consequence of a nonzero photon rest mass is a frequency dependence in the velocity of light propagating in vacuum. A detailed representation of how to obtain a combined severe limit on the photon mass using fast radio bursts at different redshifts through the dispersion method is presented. The accuracy of the WEP has been well tested based on the Shapiro time delay of astrophysical messengers traveling through a gravitational field. Some caveats of Shapiro delay tests are discussed. In this article, we review and update the status of astrophysical tests of fundamental physics.  相似文献   

13.
In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.  相似文献   

14.
Recent x-ray observations revealed that strong cooling flow of intracluster gas is not present in galaxy clusters, even though it is predicted theoretically if there is no additional heating source. I show that relativistic particles produced by dark matter neutralino annihilation in cluster cores provide a sufficient heating source to suppress the cooling flow, under reasonable astrophysical circumstances including adiabatic growth of central density profile, with appropriate particle physics parameters for dark matter neutralinos. In contrast to other astrophysical heat sources, such as active galactic nuclei, this process is a steady and stable feedback over cosmological time scales after turned on.  相似文献   

15.
Some laser spectroscopy experiments carried out by the Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration to measure the single-photon transition frequencies of antiprotonic helium (\(\overline {p}\text {He}^{+}\equiv \overline {p}+\text {He}^{2+}+e^{-}\)) atoms are reviewed. The \(\overline {p}\text {He}^{+}\) were cooled to temperature T =?1.5–1.7 K by buffer-gas cooling in a cryogenic gas target, thus reducing the thermal Doppler width in the single-photon resonance lines. The antiproton-to-electron mass ratio was determined as \(M_{\overline {p}}/m_{e}=?1836.1526734(15)\) by comparisons with the results of three-body quantum electrodynamics calculations. This agreed with the known proton-to-electron mass ratio.  相似文献   

16.
Laser cosmology     
Recent years have witnessed tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events;(2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.  相似文献   

17.
Kinetic Alfvén Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30%~50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.  相似文献   

18.
用激光等离子体相互作用对天体物理过程进行模拟研究已成为当前世界物理和天文学家深感兴趣的重要前沿领域.文章比较了强激光作用下产生的等离子体与天体物理条件下的等离子体之间在内部物理过程的相似性,论述了由前者模拟后者的物理依据,即相似性原则和定标规律.在此基础上,回顾和评述了当前已经在高离化态光谱学、类天体等离子体状态方程和辐射不透明度以及流体动力学不稳定性等方面开展的强激光天体物理学的研究,这些研究对于理解超新星、白矮星、中子星以及巨行星、褐矮星等领域的天体物理过程起到了极大的作用,并正在成为联系天体物理理论模拟和观测的中间桥梁.  相似文献   

19.
We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximation for various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultra-relativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.  相似文献   

20.
We derive model-independent, "naturalness" upper bounds on the magnetic moments munu of Dirac neutrinos generated by physics above the scale of electroweak symmetry breaking. In the absence of fine-tuning of effective operator coefficients, we find that current information on neutrino mass implies that[EQUATION: SEE TEXT] bohr magnetons. This bound is several orders of magnitude stronger than those obtained from analyses of solar and reactor neutrino data and astrophysical observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号