共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between extended structures, glassy dynamics and an underlying critical point is examined in the context
of a lattice model of fluctuating lines. Monte Carlo simulations are used to construct an effective, coarse-grained dynamics
for the “order parameter” near the critical point. Analysis of the effective dynamics reveals that the critical point is associated
with diverging barriers leading to the observed Vogel-Fulcher divergence of the relaxation times. A direct connection is established
between the presence of extended structures and the activated dynamics.
Received 15 March 2002 相似文献
2.
We report the modifications of the microscopic dynamics of a colloidal glass submitted to shear. We use multispeckle diffusing wave spectroscopy to monitor the evolution of the spontaneous slow relaxation processes after the samples have been submitted to various straining. We show that high shear rejuvenates the system and accelerates its dynamics, whereas moderate shear over-ages the system. We analyze these phenomena within the frame of the Bouchaud's trap model. 相似文献
3.
We study the nonlinear rheological behavior and the microscopic particle dynamics for a colloidal glass, to see whether recently developed models for driven glassy systems can be applied to predict the rheology. Qualitatively, all the findings predicted by the models can be retrieved in our system. Notably, the viscosity decreases strongly with the shear rate. Since it is difficult to predict non-Newtonian viscosities of colloidal systems due to long-ranged hydrodynamic interactions, this shows the promise of this approach for predicting flow behavior. In addition, the measurements allow us to relate the microscopic diffusion dynamics to the macroscopic viscosity of the system. 相似文献
4.
The intermediate scattering function (ISF) is measured for a colloidal hard-sphere glass as functions of the scattering vector and waiting time. For scattering vectors near the structure factor peak, we show that the ISF and the stretching index, defined at the crossover time between the fast and slow processes, depend algebraically on the waiting time. By contrast, the Debye-Waller factor is independent of the waiting time. 相似文献
5.
6.
A mixture of two types of super-paramagnetic colloidal particles with long-range dipolar interaction is confined by gravity to a flat interface of a hanging water droplet. The particles are observed by video microscopy and the dipolar interaction strength is controlled by an external magnetic field. The local structure as obtained by pair correlation functions and bond order statistics is investigated as a function of system temperature and relative concentration. Although the system has no long-range order and exhibits glassy dynamics, different types of stable crystallites coexist. The local order of the globally disordered structure is explained by a small set of specific crystal structures. The statistics of crystal unit cells show a continuous increase of local order with decreasing system temperature as well as a dependence on sample history and local composition. 相似文献
7.
We present a direct experimental measurement of an effective temperature in a colloidal glass of laponite, using a micrometric bead as a thermometer. The nonequilibrium fluctuation-dissipation relation, in the particular form of a modified Einstein relation, is investigated with diffusion and mobility measurements of the bead embedded in the glass. We observe an unusual nonmonotonic behavior of the effective temperature: starting from the bath temperature, it is found to increase up to a maximum value, and then decrease back, as the system ages. We show that the observed deviation from the Einstein relation is related to the relaxation times previously measured in dynamic light scattering experiments. 相似文献
8.
9.
V. P. Vasiliev V. D. Nenadovich V. V. Murashkin A. L. Sokolov 《Optics and Spectroscopy》2016,121(3):460-465
The effect of the kind of the reflecting coating of a glass spherical satellite on thermal deformations caused by the solar irradiation is considered. Two types of coating deposited on one of the hemispheres are considered: aluminum with a protective layer of bakelite varnish and interference dielectric coating for two orientations of the satellite orbit. Structures of a multilayer dielectric coating and technologies of its deposition are described. 相似文献
10.
Jabbari-Farouji S Mizuno D Atakhorrami M MacKintosh FC Schmidt CF Eiser E Wegdam GH Bonn D 《Physical review letters》2007,98(10):108302
We provide a direct experimental test of the fluctuation-dissipation theorem (FDT) in an aging colloidal glass. The use of combined active and passive microrheology allows us to independently measure both the correlation and response functions in this nonequilibrium situation. Contrary to previous reports, we find no deviations from the FDT over several decades in frequency (1 Hz-10 kHz) and for all aging times. In addition, we find two distinct viscoelastic contributions in the aging glass, including a nearly elastic response at low frequencies that grows during aging. 相似文献
11.
L. Bellon M. Gibert R. Hernández 《The European Physical Journal B - Condensed Matter and Complex Systems》2007,55(1):101-107
We study thermal convection in a colloidal glass of Laponite in formation. Low concentration preparation are submitted to
destabilizing vertical temperature gradient, and present a gradual transition from a turbulent convective state to a steady
conductive state as their viscosity increases. The time spent under convection is found to depend strongly on sample concentration,
decreasing exponentially with mass fraction of colloidal particles. Moreover, at fixed concentration, it also depends slightly
on the pattern selected by the Rayleigh Bénard instability: more rolls maintain the convection state longer. This behavior
can be interpreted with recent theoretical approaches of soft glassy material rheology. 相似文献
12.
We examine the structure of the distribution of single particle displacements (van Hove function) in a broad class of materials close to glass and jamming transitions. In a wide time window comprising structural relaxation, van Hove functions reflect the coexistence of slow and fast particles (dynamic heterogeneity). The tails of the distributions exhibit exponential, rather than Gaussian, decay. We argue that this behavior is universal in glassy materials and should be considered the analog, in space, of the stretched exponential decay of time correlation functions. We introduce a dynamical model that describes quantitatively numerical and experimental data in supercooled liquids, colloidal hard spheres, and granular materials. The tails of the distributions directly explain the decoupling between translational diffusion and structural relaxation observed in glassy materials. 相似文献
13.
We present an experimental investigation of the Generalized Einstein Relation (GER), a particular form of a fluctuation-dissipation relation, in an out-of-equilibrium visco-elastic fluid. Micrometer beads, used as thermometers, are immersed in an aging colloidal glass to provide both fluctuation and dissipation measurements. The deviations from the Generalized Einstein Relation are derived as a function of frequency and aging time. The observed deviations are interpreted as directly related to the change in the glass relaxation times with aging time. In our scenario, deviations are observed in the regime where the observation timescale is of the order of a characteristic relaxation time of the glass. 相似文献
14.
A theoretical approach is developed to derive a hierarchy of mode-coupling equations for the dynamics of concentrated colloidal suspensions, which improves the prediction of the colloidal glass transition. Our derivation is based on a matrix formalism for stochastic dynamics and the resulting recursive expressions for irreducible memory functions. The 1st order truncation of the generalized mode-coupling closure recovers mode-coupling theory, whereas its 2nd and 3rd order truncations provide corrections. The predictions of the transition volume fraction and Debye-Waller parameter for the hard-sphere colloidal system improve with the increasing mode-coupling order and compare favorably with experimental measurements. 相似文献
15.
We study the thermal fluctuations of an optically confined probe particle, suspended in an aging colloidal suspension, as the suspension transforms from a viscous liquid into an elastic glass. The micron-sized bead forms a harmonic oscillator. By monitoring the equal-time fluctuations of the tracer, at two different laser powers we determine the temperature of the oscillator, T(o). In the ergodic liquid the temperatures of the oscillator and its environment are equal, while in contrast, in a nonequilibrium glassy phase we find that T(o) substantially exceeds the bath temperature. 相似文献
16.
Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging regions. The low-frequency modes, obtained over short time scales, show strong spatial correlation with the rearrangements that happen on long time scales. 相似文献
17.
A statistical-mechanical theory of self-diffusion in colloidal suspensions is presented. A renormalized linear Langevin equation is derived from a nonlinear Langevin equation by employing the Tokuyama–Mori projection operator method. The friction constant is thus shown to be renormalized by the many-body correlation effects due to not only the direct interactions between particles, but also due to the hydrodynamic interactions between particles. The equations for the mean-square displacement and the non-Gaussian parameter are then derived. The present theory is applied to colloidal glass transitions to discuss the crossover phenomena in the dynamics of a single particle from a short-time self-diffusion process to a long-time self-diffusion process via a β (caging) stage. The effects of the renormalized friction coefficient on self-diffusion are thus explored with the aid of the analyses of the experimental data and the simulation results by the mean-field theory proposed by the present author. It is thus shown that the relaxation time of the renormalized memory function is given by the β-relaxation time. It is also shown that the non-Gaussian parameter is very small, even near the glass transition, because of the existence of the short-time self-diffusion coefficient caused by the hydrodynamic interactions. 相似文献
18.
A mixture of two types of super-paramagnetic colloidal particles with long-range dipolar interaction is confined by gravity
to the flat interface of a hanging water droplet. The particles are observed by video microscopy and the dipolar interaction
strength is controlled via an external magnetic field. The system is a model system to study the glass transition in 2D, and
it exhibits partial clustering of the small particles (N. Hoffmann et al., Phys. Rev. Lett. 97, 078301 (2006)). This clustering is strongly dependent on the relative concentration of big and small particles. However, changing the interaction strength reveals that the clustering does not depend on the interaction strength. The partial clustering scenario is quantified using Minkowski functionals and partial structure factors. Evidence that partial clustering prevents global crystallization is discussed. 相似文献
19.
Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified. 相似文献
20.
The microstructure and dynamics of a colloidal system interacting via short-ranged interparticle potential is studied by ultra-small-angle x-ray scattering and x-ray photon correlation spectroscopy. A colloidal gas-liquid type transition is induced when the short-ranged attractive interactions attain sufficient magnitude. The development of liquidlike structure is preceded by a systematic transition in the particle dynamics from diffusive to constrained motion and then completely frozen behavior. This demonstrates the existence of a jamming transition induced by strong short-ranged attractive interactions even at low packing fractions. 相似文献