首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以LiH2PO4和廉价的Fe2O3为原料,葡萄糖为有机碳源,通过选择高价V5+进行铁位掺杂固相合成碳包覆复合改性的LiFe1-xVxPO4/C(x=0,0.01,0.03,0.05,0.07,0.1)材料。700℃下处理得到结晶性好、电化学性能良好、较高振实密度ρ=1.2g·cm-3的材料。X射线光电子能谱(XPS)测试结果表明掺入的钒为高价态V5+,能产生更多的过剩电子,从而提高了电子电导率,且V5+的掺入没有改变Fe的价态。交流阻抗测试结果进一步证明了V5+的掺入降低了电荷迁移阻抗,提高了材料的电子电导率。其中优化的材料LiFe0.95V0.05PO4显示了不同倍率下良好的充放电比容量,在0.1C、1C、2C和5C倍率的放电比容量分别为155、146.5、135.3和125.9mAh·g-1,5C循环500次后容量为119.5mAh·g-1,容量保持率为94.9%,材料循环性能较好,具有良好的实际应用价值。  相似文献   

2.
尝试对共沉淀法进行改进, 利用自制的加料装置合成了橄榄石型LiFePO4/C复合正极材料. 应用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、循环伏安(CV)以及恒电流充放电测试等方法对目标材料进行了结构表征和电化学性能测试. 实验结果表明采用该法得到的样品具有单一的橄榄石结构, 样品形貌规则, 粒径细小均匀. 改性后的材料具有较高的首放容量及良好的循环稳定性能. 0.1C倍率下充放电测试表明, 其首次放电比容量超过145 mAh•g-1, 50次循环后, 容量没有明显衰减. 0.2C和0.5C倍率下的平均放电容量分别为130及120 mAh•g-1, 循环过程中样品表现出较好的循环稳定性.  相似文献   

3.
阮艳莉  唐致远 《化学学报》2008,66(6):680-684
尝试对共沉淀法进行改进, 利用自制的加料装置合成了橄榄石型LiFePO4/C复合正极材料. 应用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、循环伏安(CV)以及恒电流充放电测试等方法对目标材料进行了结构表征和电化学性能测试. 实验结果表明采用该法得到的样品具有单一的橄榄石结构, 样品形貌规则, 粒径细小均匀. 改性后的材料具有较高的首放容量及良好的循环稳定性能. 0.1C倍率下充放电测试表明, 其首次放电比容量超过145 mAh•g-1, 50次循环后, 容量没有明显衰减. 0.2C和0.5C倍率下的平均放电容量分别为130及120 mAh•g-1, 循环过程中样品表现出较好的循环稳定性.  相似文献   

4.
微乳液法合成LiFePO4 / C正极材料及其电化学性能   总被引:4,自引:0,他引:4  
本文采用微乳液方法合成了纳米LiFePO4 / C正极材料。制备样品分别用XRD和SEM进行表征,充放电测试其电化学性能。600 ℃制备样品为单一物相,平均粒径90 nm,在室温2.0~4.0 V (vs Li) 放电电压范围和15 mA·g-1放电速率下,首次放电容量达到159 mAh·g-1。制备样品同样展现良好的循环性能。在15 mA·g-1速率下40次循环后,制备样品放电容量仍保持首次放电容量的98.9%。优异的电化学性能得益于样品颗粒的纳米尺寸、均匀分布以及表面碳层包覆提高了活性材料的电子电导率。  相似文献   

5.
LiFePO4:水热合成及性能研究   总被引:4,自引:0,他引:4  
LiFePO4是继尖晶石型LiMn2O4[1]之后的一种新型锂离子电池正极材料,其具有结构稳定,工作电位适中(3.45VvsLi/Li )、可逆容量高、无毒价廉等优点,被认为是极具发展潜力的锂离子电池正极材料[2]。有关LiFePO4的结构[3]和性能[4]研究引人关注。目前,LiFePO4主要是采用高温固相法[5]来合成,尽管简单方便,但由于该传统方法的局限性,很难得到纯度高、粒径小、电性能好的LiFePO4。因此人们尝试用微波加热[6]、溶胶-凝胶[7]、共沉淀[8]等制备方法,希望得到理想的LiFePO4材料,但是采用水热法制备LiFePO4鲜见报道。本文采用水热法制备了纯…  相似文献   

6.
钛掺杂的非化学计量LiFePO4的合成与电化学性能研究   总被引:2,自引:0,他引:2  
0 Introduction Phospho-olivine LiFePO4 as a prom ising cathode m aterialforlithium ion batteries has aroused consider- able interests due to its low cost, benign for environ- m ent, high tem perature capability and relatively high energy density[1,2]. Ith…  相似文献   

7.
碳包覆LiFePO4的一步固相法制备及高温电化学性能   总被引:8,自引:0,他引:8  
Carbon coated LiFePO4 cathode material was synthesized by one-step solid-state reaction and characterized by X-ray diffraction (XRD), field-emission-scanning electron microscope (FESEM). Electrochemical performances of the material as cathode in lithium-ion battery were investigated at medium and elevated temperature (30 and 55 ℃) by galvanostatic charge-discharge and A.C. impedance tests. The results show that carbon coated LiFePO4 powder exhibits a well-crystallized olivine structure and spherical morphology with an average particle size of about 500 nm. Galvanostatic charge-discharge tests show that the reversible discharge capacity at 1 C and 1.5 C rates was improved from 121 and 105 mAh·g-1 at 30 ℃ to 136 and 123 mAh·g-1 at 55℃, respectively, while the enhancement of high temperature on electrochemical performance is less obvious at a rate lower than 0.5 C. Impedance spectra analyses indicate that the cathode material has a remarkably higher lithium-ion diffusivity at 55 ℃ than that at 30 ℃, which improves the electrochemical performance at high temperature.  相似文献   

8.
微波法制备掺碳LiFePO4正极材料   总被引:7,自引:0,他引:7  
Cathode material LiFePO4 of lithium-ion battery was synthesized by microwave heating. The “carbon-included” LiFePO4 with improved conductivity was synthesized by the addition of graphite. And the influence of microwave-heating time on structure, morphology and charge/discharge performance of the products was discussed. The results of XRD, SEM, XPS, CV and charge/discharge testing measurements showed that the LiFePO4 product after 9 min in microwave oven had more advantages than other products.  相似文献   

9.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

10.
Al3+掺杂对Li2FeSiO4结构和电化学性能影响的研究   总被引:2,自引:2,他引:0  
以CH3COOLi·2H2O、C6H8O7·H2O、FeC6H5O7·5H2O、Al2(SO4)3·18H2O和C8H20O4Si为起始原料,采用水热辅助溶胶凝胶法及二次煅烧合成了Li2Fe1-xAlxSiO4/C(x=0.00、0.01、0.03、0.05)正极材料。用IR、XRD、FE-SEM、EDS等方法对材料的晶体结构进行了表征,用ZetaPAL粒度分析仪测量了其粒径分布范围,用SQUID(超导量子干涉仪)测定了样品的磁性,用恒流充/放电对其电化学性能进行了测试。结果表明:n乙酸锂n柠檬酸=4∶1、掺Al3+量为3%,80 ℃回流24 h,350 ℃恒温煅烧5 h,700 ℃恒温13 h,所得试样颗粒集中分布在150 nm左右且未出现团聚。在0.1C(16 mA·g-1)、0.2C、0.5C下的首次放电比容量为127 mAh·g-1、103.6 mAh·g-1和91 mAh·g-1,15次循环后无明显衰减,具有很好的循环稳定性。  相似文献   

11.
不同碳源对多孔球形LiFePO4/C复合材料的影响   总被引:2,自引:0,他引:2  
采用喷雾干燥-碳热还原法(SDCTM),分别研究了无机和有机碳源对锂离子正极材料LiFePO4/C形貌、结构及其充放电性能的影响。结果表明:以无机碳源炭黑制备的LiFePO4/C呈不规则球形,一次颗粒粒径在800nm左右,比表面积为2m2·g-1,0.1C放电比容量为107.3mAh·g-1。而以有机碳源制备的LiFePO4/C,其形貌较为规则,呈多孔球形结构,具有较高的比表面积和放电比容量。其中,以柠檬酸为碳源制备的多孔球形LiFePO4/C复合材料,其孔径均在50nm左右,比表面积可达32m2·g-1;在室温下,0.1C和10C首次放电比容量分别为158.8和87.2mAh·g-1,具有优异的循环性能和高倍率充放电性能。  相似文献   

12.
采用两步加热高温固相法合成了掺杂Nd3+的LiFe1-xNdxPO4/C复合材料(x=0,0.01,0.02,0.04,0.06,0.08).用TG-DSC对前驱体进行分析和SQUID(超导量子干涉仪)对样品中Fe3+的磁性测定,优化了合成工艺条件;采用XRD、FE-SEM、EDS等方法分析了样品的结构并对其电化学性能进行了测试.结果表明:LiFe1-xNdxPO4/C复合材料具有橄榄石型结构;当Nd3+的掺杂量6%(物质的量分数)、煅烧温度700℃、煅烧时间16h时,样品在0.2C(1C=170.0mA·g-1)电流密度下的最大放电比容量可达165.2mAh·g-1,循环100次后的容量保持率仍为92.8%,在1C、2C、5C下的最大放电比容量分别为146.8、125.7和114.8 mAh·g-1.通过测定样品在不同较低倍率下的放电比容量,采用外推法得出制备样品的实测理论比容量为168.7 mAh·g-1.  相似文献   

13.
张鹏  孔令斌  罗永春  康龙 《电化学》2012,(4):337-341
本文采用碳热还原法,以廉价的FeCl3.6H2O、LiOH.H2O和NH4H2PO4为原料,以淀粉为还原剂和碳源,经600℃烧结制备了LiFePO4/C复合材料,方法重现性好且易规模化生产.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)测试材料结构,观察材料形貌.结果表明,经600℃烧结10 h所得产物具有纯相的橄榄石型晶体结构,良好的结晶性和规整的球状形貌,粒径为60~100 nm.包覆LiFePO4晶粒的碳层厚度为2 nm左右,碳含量为5%(by mass).材料的振实密度高达1.3 g·cm-3,在0.2C倍率下首次放电比容量为162 mAh·g-1,在0.5C、1C、2C、5C和10C倍率下首次放电比容量分别为143、135、127、116和105 mAh·g-1,10C倍率下500周期循环,其比容量仍有81 mAh·g-1.  相似文献   

14.
Based on the method of in situ polymerization synthesis combined with two-step sinter-ing process, LiFe1-xVx(PO4)(3-y)/3Fy/C was prepared. The e ects of V and F co-doping on the structure, morphology, and electrochemical performances of LiFePO4/C were in-vestigated by X-ray di raction, Fourier transform infrared spectra, scanning electron mi-croscope, charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results indicated that the V and F co-doping did not destroy the olivine structure of LiFePO4/C, but it can stabilize the crystal structure, decrease charge transfer resistance, enhance Li ion di usion velocity, further improve its cycling and high-rate capabilities of LiFePO4/C.  相似文献   

15.
使用Nb2O5和Nb(OC6H5)5为铌源对LiFePO4/C中的锂位和铁位分别掺杂,采用碳热还原法合成掺杂Nb的磷酸铁锂系列材料。运用X射线衍射仪、扫描电镜、循环伏安、交流阻抗谱和恒电流充放电测试等对材料进行表征。结果表明:相比掺杂位置,铌源对材料的颗粒形貌和粒径分布影响更大,而颗粒大小对材料的电化学性能,尤其是大倍率性能的提高有重要作用;掺杂在Li位的Nb元素比在Fe位能更好的稳定晶体结构,从而有利于提高循环性能。  相似文献   

16.
The electrochemical stability of LiFePO4 in a Li+-containing aqueous electrolyte solution is critically dependent on the pH value of the aqueous solution. It shows a considerable decay in capacity of LiFePO4 upon cycling when the pH value is increased to 11. The mechanism responsible for the capacity fading is extensively investigated by means of cyclic voltammogram, ac impedance, charge/discharge, ex situ X-ray diffraction, and chemical analysis. LiFePO4 is relatively electrochemically stable in LiNO3 aqueous solution with pH=7. But the electrochemical performance of LiFePO4 in aqueous electrolyte is inferior to that in organic electrolyte. It is attributed to the loss of Li and the Fe, P dissolution during prolonged charge-discharge in aqueous medium. A precipitate is formed on the surface of LiFePO4 electrodes. It results in the change of crystalline structure, a large electrode polarization, and capacity fading.  相似文献   

17.
金属氧化物掺杂改善LiFePO4电化学性能   总被引:16,自引:0,他引:16  
采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,并用XRD,SEM和恒电流充放电对掺杂的LiFePO4进行了研究。结果表明,少量的掺杂离子在很大程度上提高了LiFePO4的电化学性能,特别是大电流放电性能。1.0 mol%的Nb5+掺杂LiFePO4的0.1 C放电容量约150 mAh·g-1;即使在3 C倍率下放电,也有117 mAh·g-1的容量。掺杂的效果与掺杂离子的半径、价态密切相关,半径小、价态高的离子对提高LiFePO4的电化学性能有利。在掺杂量较小时(<2.0 mol%),掺杂效果与掺杂离子的浓度关系不大。  相似文献   

18.
采用MoO3氧化物前驱物对磷酸铁锂(LiFePO4)进行少量的掺杂,并用XRD、SEM、CV及恒流充放电测试对产物进行了研究。研究表明,少量的掺杂并未影响到LiFePO4的晶体结构,但却能够在一定程度上改善LiFePO4的电化学性能。其中650 ℃焙烧的1% Mo掺杂的LiFePO4材料性能较好,该材料在以0.2 C的倍率充放电时,充放电曲线具有平稳的电压平台和较大的充放电容量,首次放电容量能达到  相似文献   

19.
任强  杨旸 《结构化学》2011,30(10):1477-1482
Co2+-doped LiFePO4/C composite material was prepared by solid-state synthesis method using Fe2O3,Li2CO3 and NH4H2PO4 as the starting materials.The structures and elec-trochemical performance of samples were studied by XRD,SEM and constant current charge-discharge method.The results showed that the Co2+ doping did not change the crystal structure of LiFePO4.The unit cell volume changed with the increase of Co2+,and reached the maximum at x = 0.04.The LiFe0.96Co0.04PO4/C sample proved the best electrochemical properties.Its initial discharge capacity was 138.5 mA·h /g at 1 C rate.After 30 cycles,the capacity remained 127.7 mA·h /g,and the capacity retention rate was 92.2%.  相似文献   

20.
建立了磷酸铁锂(LiFePO4)电极材料放电曲线的阻抗模型.将不同倍率放电的电位分为欧姆电位降、电荷转移电位降与扩散阻抗电位降三部分,以电极交流阻抗谱图结合理论分析,推导出不同倍率电极电位的表达式.模拟结果显示,拟合值与实验值吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号