首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The counterions of polydiallyldimethylammonium (PDADMA) coatings were altered by incubation in aqueous solutions of different electrolytes. Oil de‐wetting on the resulting polycationic surfaces upon water action exhibited a straightforward connection with the Jones–Dole viscosity B‐coefficient () sign of surface counteranions. Upon water action, surface counteranions with negative render PDADMA coatings oil‐adhering, but those with positive furnish PDADMA coatings with excellent self‐cleaning. The oil‐adhering PDADMA surfaces can become self‐cleaning upon water action in response to the of surface counteranions sign‐switching with increasing water temperature. Courtesy of surface counter‐anions with >0, self‐cleaning PDADMA coatings enable not only conversion of conventional meshes into self‐cleaning membranes for oil/water separation, but also regioselective maneuver of oil flow on polycationic surfaces according to the sign of surface counteranions patterned atop.  相似文献   

2.
Globally, efficient oil‐water separation for surfactant‐stabilized oil‐water emulsions has been in urgent demand. The current options available for separation are neither sustainable nor resistant to fouling. Herein, we introduce a hierarchically nanostructured TiO2/Fe2O3 composite membrane, which is capable of separating surfactant‐stabilized oil‐water emulsions with high separation efficiency. The high oil rejection rate is contributed by the acquisition of an interconnected delicate network and underwater superoleophobic interface. Meanwhile, its self‐cleaning function promote the facile recovery of the contaminated membrane. Furthermore, the mechanical flexible characteristic of the TiO2/Fe2O3 composite membrane widens its applicability in industrial employment. Thanks to these properties, this novel membrane can be considered as a practical option for treating surfactant‐stabilized oil‐water emulsions.  相似文献   

3.
Coating solid surfaces with cellulose nanofibril (CNF) monolayers via physical deposition was found to keep the surfaces free of a variety of oils, ranging from viscous engine oil to polar n ‐butanol, upon water action. The self‐cleaning function was well correlated with the unique molecular structure of the CNF, in which abundant surface carboxyl and hydroxy groups are uniformly, densely, and symmetrically arranged to form a polar corona on a crystalline nanocellulose strand. This isotropic core–corona configuration offers new and easily adoptable guidance to design self‐cleaning surfaces at the molecular level. Thanks to its excellent self‐cleaning behavior, the CNF coating converted conventional meshes into highly effective membranes for oil–water separation with no prior surface treatment required.  相似文献   

4.
Oil/water separation through superhydrophobic/superoleophilic materials has attracted considerable interest over the past decades; however, dealing with oil spills on broad waters through an active way remains a challenge. Herein, we report a self‐propelled smart device driven by the decomposition of hydrogen peroxide that can spontaneously move on the water surface and collect floating oil droplets inside with superhydrophobic and superoleophilic properties. Moreover, the self‐propelled smart device exhibits excellent stability and high efficiency for oil/water separation. We believe this study may provide a promising strategy for fabricating smart aquatic devices that have potential applications in water remediation.  相似文献   

5.
Metal–organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination‐driven in situ self‐assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF‐particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high‐quality ZIF‐8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.  相似文献   

6.
Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.  相似文献   

7.
Self‐healing solid‐state aqueous rechargeable NiCo||Zn batteries are inherently safe and have a high energy density and mechanical robustness. However, the self‐healability of solid‐state batteries has only been realized by a few studies in which electron/ion‐inactive self‐healable substrates are utilized. This arises from the lack of self‐healable electrolytes. Now an intrinsically self‐healing battery has been designed that utilizes a new electrolyte that is intrinsically self‐healable. Sodium polyacrylate hydrogel chains are crosslinked by ferric ions to promote dynamic reconstruction of an integral network. These non‐covalent crosslinkers can form ionic bonds to reconnect damaged surfaces when the hydrogel is cut off, providing an ultimate solution to the intrinsic self‐healability problem of batteries. As a result, this NiCo||Zn battery with this hydrogel electrolyte can be autonomically self‐healed with over 87 % of capacity retained after 4 cycles of breaking/healing.  相似文献   

8.
A novel and facile approach to manipulate the morphology of Cu2+‐ion‐specific assembly of conjugated polymer by coordinative interaction at an oil–water two‐phase interface is present. The application of increasing importance is the use of π‐conjugated polymers as receptors, exploiting their ability to selectively form complexes, which can obviously change the optical properties in solution and induce the formation of varied solid nano/microstructures. By this method, microtubes are formed through self‐rolling of a strained ionic bilayer film at the oil/water interface.  相似文献   

9.
Self‐healing is a natural process common to all living organisms which provides increased longevity and the ability to adapt to changes in the environment. Inspired by this fitness‐enhancing functionality, which was tuned by billions of years of evolution, scientists and engineers have been incorporating self‐healing capabilities into synthetic materials. By mimicking mechanically triggered chemistry as well as the storage and delivery of liquid reagents, new materials have been developed with extended longevity that are capable of restoring mechanical integrity and additional functions after being damaged. This Review describes the fundamental steps in this new field of science, which combines chemistry, physics, materials science, and mechanical engineering.  相似文献   

10.
An extrinsic self‐healing coating system containing tetraphenylethylene (TPE) in microcapsules was monitored by measuring aggregation‐induced emission (AIE). The core healing agent comprised of methacryloxypropyl‐terminated polydimethylsiloxane, styrene, benzoin isobutyl ether, and TPE was encapsulated in a urea‐formaldehyde shell. The photoluminescence of the healing agent in the microcapsules was measured that the blue emission intensity dramatically increased and the storage modulus also increased up to 105 Pa after the photocuring. These results suggested that this formulation might be useful as a self‐healing material and as an indicator of the self‐healing process due to the dramatic change in fluorescence during photocuring. To examine the ability of the healing agent to repair damage to a coating, a self‐healing coating containing embedded microcapsules was scribed with a razor. As the healing process proceeded, blue light fluorescence emission was observed at the scribed regions. This observation suggested that self‐healing could be monitored using the AIE fluorescence.

  相似文献   


11.
Moisture or water has the advantages of being green, inexpensive, and moderate. However, it is challenging to endow water‐induced shape memory property and self‐healing capability to one single polymer because of the conflicting structural requirement of the two types of materials. In this study, this problem is solved through introducing two kinds of supramolecular interactions into semi‐interpenetrating polymer networks (semi‐IPNs). The hydrogen bonds function as water‐sensitive switches, making the materials show moisture‐induced shape memory effect. The host–guest interactions (β‐cyclodextrin‐adamantane) serve as both permanent phases and self‐healing motifs, enabling further increased chain mobility at the cracks and self‐healing function. In addition, these polyvinylpyrrolidone/poly(hydroxyethyl methacrylate‐co‐butyl acrylate) semi‐IPNs also show thermosensitive triple‐shape memory effect.

  相似文献   


12.
Flexible lithium‐ion batteries are critical for the next‐generation electronics. However, during the practical application, they may break under deformations such as twisting and cutting, causing their failure to work or even serious safety problems. A new family of all‐solid‐state and flexible aqueous lithium ion batteries that can self‐heal after breaking has been created by designing aligned carbon nanotube sheets loaded with LiMn2O4 and LiTi2(PO4)3 nanoparticles on a self‐healing polymer substrate as electrodes, and a new kind of lithium sulfate/sodium carboxymethylcellulose serves as both gel electrolyte and separator. The specific capacity, rate capability, and cycling performance can be well maintained after repeated cutting and self‐healing. These self‐healing batteries are demonstrated to be promising for wearable devices.  相似文献   

13.
《先进技术聚合物》2018,29(1):463-469
Tough and transparent polyurethane networks with self‐healing capability at mild temperature conditions were successfully prepared in a 1‐pot procedure. The self‐healing ability of synthesized polyurethane comes from the covalent disulfide metathesis and non‐covalent H‐bonding. The mechanical testing indicates that disulfide metathesis reforms the covalent bonds on a longer time scale, while H‐bonding gives rise to a healing efficiency of around 46% in the early healing processing. The compromise between mechanical performance and healing capability is reached by tailoring the concentration of disulfide. The tensile strength of the sample with 100% self‐heal efficiency can get to 5.01 MPa, which can be explained by higher mobility of polymer chain under ambient temperature from creep testing.  相似文献   

14.
Polymer‐based crosslinked networks with intrinsic self‐repairing ability have emerged due to their built‐in ability to repair physical damages. Here, novel dual sulfide–disulfide crosslinked networks (s‐ssPxNs) are reported exhibiting rapid and room temperature self‐healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self‐healable networks utilizes a combination of well‐known crosslinking chemistry: photoinduced thiol‐ene click‐type radical addition, generating lightly sulfide‐crosslinked polysulfide‐based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s‐ssPxNs. The resulting s‐ssPxN networks show rapid self‐healing within 30 s to 30 min at room temperature, as well as self‐healing elasticity with reversible viscoelastic properties. These results, combined with tunable self‐healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials.

  相似文献   


15.
Supramolecular polymers that can heal themselves automatically usually exhibit weakness in mechanical toughness and stretchability. Here we exploit a toughening strategy for a dynamic dry supramolecular network by introducing ionic cluster‐enhanced iron‐carboxylate complexes. The resulting dry supramolecular network simultaneous exhibits tough mechanical strength, high stretchability, self‐healing ability, and processability at room temperature. The excellent performance of these distinct supramolecular polymers is attributed to the hierarchical existence of four types of dynamic combinations in the high‐density dry network, including dynamic covalent disulfide bonds, noncovalent H‐bonds, iron‐carboxylate complexes and ionic clustering interactions. The extremely facile preparation method of this self‐healing polymer offers prospects for high‐performance low‐cost material among others for coatings and wearable devices.  相似文献   

16.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

17.
Recent developments in material design have seen an exponential increase of polymers and polymer composites that can repair themselves in response to damage. In this review, a distinction is made between extrinsic materials, where the self‐healing property is obtained by adding healing agents to the material to be repaired, and intrinsic materials, where self‐healing is achieved by the material itself through its chemical nature. An overview of the crosslinking chemistries used in self‐healing materials will be given, discussing the advantages and drawbacks of each system. The review is not only aiming to enable researchers to compare their ongoing research with the state‐of‐the‐art but also to serve as a guide for the newcomers, which allows for a selection of the most promising self‐healing chemistries.  相似文献   

18.
One of the most inevitable limitations of any material that is exposed to mechanical impact is that they are inexorably prone to mechanical damage, such as cracking, denting, gouging, or wearing. To confront this challenge, the field of polymers has developed materials that are capable of autonomous self‐healing and recover their macroscopic integrity similar to biological organisms. However, the study of this phenomenon has mostly remained within the soft materials community and has not been explored by solid‐state organic chemists. The first evidence of self‐healing in a molecular crystal is now presented using crystals of dipyrazolethiuram disulfide. The crystals were mildly compressed and the degree of healing was found to be 6.7 %. These findings show that the self‐healing properties can be extended beyond mesophasic materials and applied towards the realm of ordered solid‐state compounds.  相似文献   

19.
“Aqua materials” that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel‐like membrane self‐assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water‐based self‐assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications.  相似文献   

20.
Oxygen vacancy (Vo) on transition metal oxides plays a crucial role in determining their chemical/physical properties. Conversely, the capability to directly detect the changing process of oxygen vacancies (Vos) will be important to realize their full potentials in the related fields. Herein, with a novel synchronous illumination X‐ray photoelectron spectroscopy (SI‐XPS) technique, we found that the surface Vos (surf‐Vos) exhibit a strong selectivity for binding with the water molecules, and sequentially capture an oxygen atom to achieve the anisotropic self‐healing of surface lattice oxygen. After this self‐healing process, the survived subsurface Vos (sub‐Vos) promote the charge excitation from Ti to O atoms due to the enriched electron located on low‐coordinated Ti sites. However, the excessive sub‐Vos would block the charge separation and transfer to TiO2 surfaces resulted from the destroyed atomic structures. These findings open a new pathway to explore the dynamic changes of Vos and their roles on catalytic properties, not only in metal oxides, but in crystalline materials more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号