首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Platinum is the most versatile element in catalysis, but it is rare and its high price limits large‐scale applications, for example in fuel‐cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst’s surface. To maximize the noble‐metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria “nanopocket”, which binds Pt2+ so strongly that it withstands sintering and bulk diffusion. On model catalysts we experimentally confirm the theoretically predicted stability, and on real Pt‐CeO2 nanocomposites showing high Pt efficiency in fuel‐cell catalysis we also identify these anchoring sites.  相似文献   

3.
The synergistic effect between Pt and WC is beneficial for methanol electro‐oxidation, and makes Pt–WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small‐sized and contacting Pt–WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small‐sized, well‐dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre‐existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2–3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt–WC nanostructures. These results are consistent with the theoretical findings. X‐ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt–WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively.  相似文献   

4.
Development of heterogeneous catalysts has attracted increasing attention, owing to their remarkable catalytic performance and recyclability. Herein, we report well‐developed heterogeneous catalysts with a three‐dimensional ordered hierarchical structure, constructed from nickel or cobalt nanoparticles embedded in porous carbon. The obtained catalysts were fully characterized by several techniques. On account of the uniform distribution of metal nanoparticles in the porous carbon matrix and large diffusion channels that allow for effective mass transport, the catalysts exhibited superior catalytic performance for styrene epoxidation reaction. In particular, the catalysts showed good catalytic activity, high selectivity and excellent recyclability toward the styrene epoxidation. Thus, this facile approach developed allows for fabricating advanced heterogeneous catalysts with high catalytic activities for useful practical applications.  相似文献   

5.
6.
7.
Catalytic CO oxidation by molecular O2 is an important model reaction in both the condensed phase and gas‐phase studies. Available gas‐phase studies indicate that noble metal is indispensable in catalytic CO oxidation by O2 under thermal collision conditions. Herein, we identified the first example of noble‐metal‐free heteronuclear oxide cluster catalysts, the copper–vanadium bimetallic oxide clusters Cu2VO3–5? for CO oxidation by O2. The reactions were characterized by mass spectrometry, photoelectron spectroscopy, and density functional calculations. The dynamic nature of the Cu?Cu unit in terms of the electron storage and release is the driving force to promote CO oxidation and O2 activation during the catalysis.  相似文献   

8.
Ethylene hydrogenation was investigated on size‐selected Pt13 clusters supported on three amorphous silica (a‐SiO2) thin films with different stoichiometries. Activity measurements of the reaction at 300 K revealed that on a silicon‐rich and a stoichiometric film, Pt13 exhibits a similar activity to that of Pt(111), in line with the known structure insensitivity of the reaction. On an oxygen‐rich film, a threefold increased rate was measured. Pulsing ethylene at 400 K, then measuring the activity at 300 K, resulted in complete loss of activity on the silicon‐rich surface compared to only marginal losses on the other surfaces. The measured reactivity trends correlate with charging characteristics of a Pt13 cluster on the SiO2 films, predicted through first‐principle calculations. The results reveal that the stoichiometry‐dependent charging by the support can be used to tune the selectivity of reaction pathways during a catalytic hydrogenation reaction.  相似文献   

9.
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.  相似文献   

10.
The iron‐catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic FeII/FeIII precursors and tris[2‐(diphenylphosphino)ethyl]phosphine ( 1 , PP3). In contrast to most known noble‐metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand‐to‐metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3)]BF4/PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm?1, which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand.  相似文献   

11.
12.
The density functional theory (DFT) model ONIOM(M06L/6‐311++G(2df,2p):UFF was employed to reveal the catalytic activity of CuII in the paddle‐wheel unit of the metal‐organic framework (MOF)‐505 material in the Mukaiyama aldol reaction compared with the activity of Cu‐ZSM‐5 zeolites. The aldol reaction between a silyl enol ether and formaldehyde catalyzed by the Lewis acidic site of both materials takes place through a concerted pathway, in which the formation of the C? C bond and the transfer of the silyl group occurs in a single step. MOF‐505 and Cu‐ZSM‐5 are predicted to be efficient catalysts for this reaction as they strongly activate the formaldehyde carbonyl carbon electrophile, which leads to a considerably lower reaction barrier compared with the gas‐phase system. Both MOF‐505 and Cu‐ZSM‐5 catalysts stabilize the reacting species along the reaction coordinate, thereby lowering the activation energy, compared to the gas‐phase system. The activation barriers for the MOF‐505, Cu‐ZSM‐5, and gas‐phase system are 48, 21, and 61 kJ mol?1, respectively. Our results show the importance of the enveloping framework by stabilizing the reacting species and promoting the reaction.  相似文献   

13.
Single atoms and few‐atom clusters of platinum are uniformly installed on the zirconia nodes of a metal‐organic framework (MOF) NU‐1000 via targeted vapor‐phase synthesis. The catalytic Pt clusters, site‐isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few‐atom clusters that depend upon synthesis conditions. Operando X‐ray absorption spectroscopy and X‐ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size‐selected clusters, including noble metals, on a high surface area support.  相似文献   

14.
15.
The single copper atom doped clusters CuAl4O7–9? can catalyze CO oxidation by O2. The CuAl4O7–9? clusters are the first group of experimentally identified noble‐metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4O9CO? is much more reactive than CuAl4O9? in the reaction with CO to generate CO2. One adsorbed CO is crucial to stabilize Cu of CuAl4O9? around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble‐metal catalysis was discussed.  相似文献   

16.
A density‐functional study has been undertaken to investigate the chemical properties of in‐plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials.  相似文献   

17.
Effectively enhancing the enantioselectivity is a persistent challenge in heterogeneous asymmetric catalysis. Here, the validity of a layered double hydroxides (LDH) nanosheet as an efficient planar substituent to enhance the enantioselectivity has been investigated theoretically; first in vanadium‐catalyzed asymmetric epoxidation of allylic alcohols, and then in zinc‐catalyzed direct asymmetric aldol addition. The computational predication is further confirmed experimentally in zinc‐catalyzed direct asymmetric aldol addition by controlling the location of catalytic sites.  相似文献   

18.
A combined experimental and theoretical investigation of Ag‐Pt sub‐nanometer clusters as heterogeneous catalysts in the CO→CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size‐selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first‐principles simulations at realistic coverage. In situ GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano‐aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.  相似文献   

19.
20.
Finite temperature analysis of cluster structures is used to identify signatures of the low‐temperature polymorphs of gallium, based on the results of first‐principle Born–Oppenheimer molecular dynamics simulations. Pre‐melting structural transitions proceed from either the β‐ and/or the δ‐phase to the γ‐ or δ‐phase, with a size‐ dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号