首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural characterization of sulfated glycans through mass spectrometry (MS) has been often limited by their low abundance in biological materials and inefficient ionization in the positive-ion mode. Here, we describe a microscale method for sequentially enriching sulfated glycans according to their degree of sulfation. This method is based on modifying the binding ability of strong anion-exchange material through the use of different sodium acetate concentrations, thus enabling fairly selective binding and a subsequent elution of different glycans according to their degree of sulfation. Before this enrichment, the negative charge on the sialic acid, which is commonly associated with such glycans, was eliminated through permethylation that is used to enhance the positive-ion mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) signal for all glycans. This enrichment approach minimizes competitive ionization between sulfated and neutral glycans, as well as that between sulfated species with a different degree of sulfation. The described method was initially optimized using sulfated oligosaccharide standards, while its potential has been verified for the sulfated N-glycans originated from the bovine thyroid-stimulating hormone (bTSH), a glycoprotein possessing mono- and disulfated N-glycans. This enhancement of the MALDI-MS signal facilitates analysis of some otherwise undetected components.  相似文献   

2.
RNA recognition by proteins is often accompanied by significant changes in RNA dynamics in addition to conformational changes. However, there are very few studies which characterize the changes in molecular motions in RNA on protein binding. We present a quantitative (13)C NMR relaxation study of the changes in RNA dynamics in the pico-nanosecond time scale and micro-millisecond time scale resulting from interaction of the stem-loop SRE-RNA with the VTS1p-SAM domain. (13)C relaxation rates of the protonated carbons of the nucleotide base and anomeric carbons have been analyzed by employing the model-free formalism, for a fully (13)C/(15)N-labeled sample of the SRE-RNA in the free and protein-bound forms. In the free RNA, the nature of molecular motions are found to be distinctly different in the stem and the loop region. On binding to the protein, the nature of motions becomes more homogeneous throughout the RNA, with many residues showing increased flexibility at the aromatic carbon sites, while the anomeric carbon sites become more rigid. Surprisingly, we also observe indications of a slow collective motion of the RNA in the binding pocket of the protein. The observation of increased motions on binding is interesting in the context of growing evidence that binding does not always lead to motional restrictions and the resulting entropy gain could favor the free energy of association.  相似文献   

3.
Innovative biomaterial‐based concepts are required to improve wound healing of damaged vascularized tissues especially in elderly multimorbid patients. To develop functional hydrogels as 3D cellular microenvironments and as carrier or scavenging systems, e.g., for mediator proteins or proinflammatory factors, collagen fibrils are embedded into a network of photo‐crosslinked acrylated hyaluronan (HA), chondroitin sulfate (CS), or sulfated HA (sHA). After lyophilization, the gels show a porous structure and an improved stability against degradation via hyaluronidase. Gels with CS and sHA bind significantly more lysozyme than HA/collagen gels and retard its release. The proliferation and metabolic activity of endothelial cells are significantly increased on sHA gels compared to CS‐ or only HA‐containing hydrogels. These findings highlight the potential of HA/collagen hydrogels with sulfated glycosaminoglycans to tune the protein binding and release behavior and to directly modulate cellular response. This can be easily translated into biomimetic biomaterials with defined properties to stimulate wound healing.  相似文献   

4.
It is well known that the sulfate groups on different positions in polysaccharides play important roles in protein adsorption. However, the interactions between sulfated chitosans and lysozyme have not been clearly elucidated. In this study, the regioselectively sulfated chitosans, 6-O-sulfated chitosan (C6S), 2-N-6-O-sulfated chitosan (C26S) and 3,6-O-sulfated chitosan (C36S), were chosen to investigate the possible mechanisms determining the interaction between lysozyme and the sulfated chitosans. It has been found that the selectively sulfated products of chitosan (CS), C6S, C26S and C36S all exhibit lysozyme binding activity. However, the maximum binding ratios of lysozyme/polysaccharide are significantly different for C6S, C26S and C36S. In addition, though C6S possesses the lowest sulfur content among the three sulfated chitosans, it exhibits the highest binding activity with lysozyme. Furthermore, in the protein mixtures, C6S shows the highest selective binding activity with lysozyme among the three sulfated chitosans in the presence of γ-globulin and bovine serum albumin (BSA). The results indicate that 6-O-sulfate groups may be responsible for the high affinity and specific interaction of sulfated chitosan with lysozyme, while 2-O-sulfate and 3-O-sulfate groups are unfavorable to this interaction.  相似文献   

5.
Sulfation is a potentially important post-translational modification of proteins and has been demonstrated in a number of polypeptides, notably in gastrointestinal hormones. In contrast to phosphorylation, however, the investigation of sulfation patterns in tissues and on purified proteins has been complicated by the absence of specific immunoreagents (antibodies) for this modification as well as the chemical lability of the sulfate group. Here, we investigate the properties of a novel mAb against sulfated tyrosyl groups (anti-Tyr(SO(3)H) antibody) using CE and a panel of sulfated and nonsulfated peptides and proteins. The data show that the anti-Tyr(SO(3)H) antibody is completely specific for compounds containing sulfated tyrosyls. Affinity electrophoresis experiments allowed us to estimate dissociation constants for sulfated hirudin fragment (56-65), gastrin-17, and cholecystokinin octapeptide (CCK8) in the 1-3 microM range. The affinity of the antibody toward complement 4 protein that contains three sulfotyrosines was analyzed by surface plasmon resonance technology and modeled according to a bivalent-binding model which yielded a K(d1) of 20.1 microM for the monovalent complex. The same binding was studied by CE and found to be in the micromolar scale albeit with some uncertainty due to complex separation patterns. The work illustrates the amount of information on antibody-antigen interactions that may be obtained with microelectrophoretic methods consuming minute quantities of material. Furthermore the specificity of this antibody could be confirmed in one operation using an array of sulfated and nonsulfated compounds.  相似文献   

6.
The efficient reversible functionalization of the periphery of urea adamantyl poly(propylene imine) dendrimers with catalytic sites using noncovalent interactions is described. Phosphine ligands equipped with urea acetic groups, a binding motive complementary to that of the dendrimer host, have been prepared and assembled to the dendrimer support. The resulting supramolecular complex has been used as a multidentate ligand system in the palladium-catalyzed allylic amination reaction in a batch process and in a continuous-flow membrane reactor. We found that the activity and selectivity of the dendrimeric complex is similar to that of the monomer complex, which indicates that the catalytic centers act as independent sites. The size of the supramolecular system is sufficiently large and the binding of the guests is strong enabling a good separation of the catalyst components from the reaction mixture using nanofiltration techniques.  相似文献   

7.
Recognition of carbohydrates by proteins and nucleic acids is highly specific, but the dissociation constants are relatively high (generally in the mM to high μM range) because of the lack of hydrophobic groups in the carbohydrates. The high specificity of this weak binding often comes from many hydrogen bonds and the coordination of metal ions as bridge between sugars and receptors. Though weak hydrophobic interactions between sugars and proteins have also been identified, the unique shape of a complex carbohydrate under the influence of anomeric and exo anomeric effects (the glycosidic torsion angles are therefore often not flexible but are typically somewhat restricted) and the topographic orientation of the hydroxyl and charged groups contribute most significantly to the recognition process. Studies on the structure–function relationship of a complex carbohydrate therefore require deliberate manipulation of its shape and functional groups, and synthesis of oligosaccharide analogs from modified monosaccharides is often useful to address the problem. The availability of various monosaccharides and their analogs for the synthesis of complex carbohydrates together with the information resulting from structural studies (such a NMR or X-ray studies on sugar–protein complexes) will certainly provide a basic understanding of complex carbohydrate recognition. An ultimate goal is to develop simple and easy-to-make non-carbohydrate molecules that resemble the active structure involved in carbohydrate–receptor interaction or the transition-state of an enzyme-catalyzed transformation (for example, glycosidase or glycosyltransferase reactions) and have the approprite bioavailability to be used to control the carbohydrate function in a specific manner. In part one of this review we described various enzymatic approaches to the synthesis of monosaccharides, analogs, and related structures. We describe in this part enzymatic and chemoenzymatic approaches to the synthesis of oligosaccarides and analogs, including those involved in E-selectin recognition, and strategies to inhibit glycosidases and glycosyltransferases.  相似文献   

8.
Electrostatic interactions play an important role in the formation of noncovalent complexes. Our previous work has highlighted the role of certain amino acid residues, such as arginine, glutamate, aspartate, and phosphorylated/sulfated residues, in the formation of salt bridges resulting in noncovalent complexes between peptides. Tandem mass spectrometry (MS) studies of these complexes using collision-induced dissociation (CID) have provided information on their relative stability. However, product-ion spectra produced by CID have been unable to assign specifically the site of interaction for the complex. In this work, tandem MS experiments were conducted on noncovalent complexes using both electron capture dissociation (ECD) and electron-transfer dissociation (ETD). The resulting spectra were dominated by intramolecular fragments of the complex with the electrostatic interaction site intact. Based upon these data, we were able to assign the binding site for the peptides forming the noncovalent complex.  相似文献   

9.
Drug-protein binding is an important process in determining the activity of a pharmaceutical agent once it has entered the body. This paper developed an affinity capillary electrophoresis method to determine the binding constant between a bioactive sulfated polysaccharide 916 (916) and a potential protein, human serum albumin. This method is based on the principle that the changing analytes have different mobility shift in the zone electrophoresis. A fixed amount of protein was injected into a capillary filled with a background electrolyte containing the polysaccharide in varying concentrations. The effective mobility data of the protein were processed according to classical linearization treatments to obtain the binding constant of 916 to the HSA complex. The binding constant Ka of 916 to the human serum albumin achieved was 2.1 × 104.  相似文献   

10.
Carbohydrates are an extremely complex group of isomeric molecules that have been difficult to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions to successive stages of MS(n) are frequently mixtures of isomers, and (2) detailed information about the anomeric configuration and location of specific stereochemical variants of monosaccharides within larger molecules has not been possible to obtain in a general way. Herein, it is demonstrated that gas-phase analyses by direct combination of electrospray ionization, ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-APIMS-TOFMS) provides sufficient resolution to separate different anomeric methyl glycosides and to separate different stereoisomeric methyl glycosides having the same anomeric configuration. Reducing sugars were typically resolved into more than one peak, which might represent separation of cyclic species having different anomeric configurations and/or ring forms. The extent of separation, both with methyl glycosides and reducing sugars, was significantly affected by the nature of the drift gas and by the nature of an adducting metal ion or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective analytical technique for the separation of isomeric methyl glycosides and simple sugars, and can be used to differentiate glycosides having different anomeric configurations.  相似文献   

11.
Electrostatic interactions can strongly increase the efficiency of protein complex formation. The charge distribution in redox proteins is often optimized to steer a redox partner to the electron transfer active binding site. To test whether the optimized distribution is more important than the strength of the electrostatic interactions, an additional negative patch was introduced on the surface of cytochrome c peroxidase, away from the stereospecific binding site, and its effect on the encounter complex as well as the rate of complex formation was determined. Monte Carlo simulations and paramagnetic relaxation enhancement NMR experiments indicate that the partner, cytochrome c, interacts with the new patch. Unexpectedly, the rate of the active complex formation was not reduced, but rather slightly increased. The findings support the idea that for efficient protein complex formation the strength of the electrostatic interaction is more critical than an optimized charge distribution.  相似文献   

12.
Site‐specific labeling of proteins with paramagnetic lanthanides offers unique opportunities by virtue of NMR spectroscopy in structural biology. In particular, these paramagnetic data, generated by the anisotropic paramagnetism including pseudocontact shifts (PCS), residual dipolar couplings (RDC), and paramagnetic relaxation enhancement (PRE), are highly valuable in structure determination and mobility studies of proteins and protein–ligand complexes. Herein, we present a new way to label proteins in a site‐specific manner with a high‐affinity and chemically stable tag, 4‐vinyl(pyridine‐2,6‐diyl)bismethylenenitrilo tetrakis(acetic acid) (4VPyMTA), through thiol alkylation. Its performance has been demonstrated in G47C and E64C mutants of human ubiquitin both in vitro and in a crowded environment. In comparison with the published tags, 4VPyMTA has several interesting features: 1) it has a very high binding affinity for lanthanides (higher than EDTA), 2) there is no heterogeneity in complexes with lanthanides, 3) the derivatized protein is stable and potentially applicable to the in situ analysis of proteins.  相似文献   

13.
A new and efficient approach for direct and stereoselective synthesis of β‐mannopyranosides by anomeric O‐alkylation has been developed. This anomeric O‐alkylation of mannopyranose‐derived lactols is proposed to occur under synergistic control of a kinetic anomeric effect and metal chelation. The presence of a conformationally flexible C6 oxygen atom in the sugar‐derived lactol donors is required for this anomeric O‐alkylation to be efficient, probably because of its chelation with cesium ion. In contrast, the presence of a C2 oxygen atom plays a minor role. This glycosylation method has been successfully utilized for the synthesis of the trisaccharide core of complex N‐linked glycans.  相似文献   

14.
Using oxygen as a paramagnetic probe, researchers can routinely study topologies and protein-binding interfaces by NMR. The paramagnetic contribution to the amide (1)H spin-lattice relaxation rates (R(1)(P)) have been studied for uniformly (2)H,(15)N-labeled FB protein, a 60-residue three-helix bundle, constituting the B domain of protein A. Through TROSY versions of inversion-recovery experiments, R(1)(P) could be determined. R(1)(P) was then measured in the presence of a stoichiometric equivalent of an unlabeled Fc fragment of immunoglobulin (Ig) G, and the ratio of R(1)(P) of the FB-Fc complex to that of free FB [i.e., R(1)(P)(complex)/R(1)(P)(free)] was determined for each observable residue. Regions of helix I and helix II, which were previously known to interact with Fc, were readily identified as belonging to the binding interface by their characteristically reduced values of R(1)(P)(complex)/R(1)(P)(free). The method of comparing oxygen-induced spin-lattice relaxation rates of free protein and protein-protein complexes, to detect binding interfaces, offers greater sensitivity than chemical shift perturbation, while it is not necessary to heavily deuterate the labeled protein, as is the case in cross saturation experiments.  相似文献   

15.
The impact of heparinoid characteristics on model surfaces obtained from immobilization of sole sulfate groups as well as sulfated glycosides, sulfated cellulose, and definite heparin has been investigated. The obtained layers were physico-chemically characterized regarding film thickness, chemical composition, wettability, and surface morphology. Antithrombin adsorption, studied by fluorescence labeling, revealed a strong dependence on the presence of glycosidic structures and on the molecular weight of the grafted saccharide. On contact with whole blood, the coatings resulted in a diminished plasmatic and cellular coagulation in vitro, which did not reflect well the antithrombin binding. Therefore, more complex activating pathways are discussed.  相似文献   

16.
Human serum albumin (HSA), the most prominent protein in blood plasma, is able to bind a wide range of endogenous and exogenous compounds. Among the endogenous ligands, HSA is a significant transporter of heme, the heme-HSA complex being present in blood plasma. Drug binding to heme-HSA affects allosterically the heme affinity for HSA and vice versa. Heme-HSA, heme, and their complexes with ibuprofen have been characterized by electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy. Comparison of the results for the heme and heme-HSA systems has provided insight into the structural consequences on the heme pocket of ibuprofen binding. The pentacoordinate tyrosine-bound heme coordination of heme-HSA, observed in the absence of ibuprofen, becomes hexacoordinate low spin upon ibuprofen binding, and heme dissociates at increasing drug levels. The electronic absorption spectrum and nu(Fe-CO)/nu(CO) vibrational frequencies of the CO-heme-HSA-ibuprofen complex, together with the observation of a Fe-His Raman mode at 218 cm(-1) upon photolysis of the CO complex and the low spin EPR g values indicate that a His residue is one of the low spin axial ligands, the sixth ligand probably being Tyr161. The only His residue in the vicinity of the heme Fe atom is His146, 9 A distant in the absence of the drug. This indicates that drug binding to heme-HSA results in a significant rearrangement of the heme pocket, implying that the conformational adaptability of HSA involves more than the immediate vicinity of the drug binding site. As a whole, the present spectroscopic investigation supports the notion that HSA could be considered as the prototype of monomeric allosteric proteins.  相似文献   

17.
Sulfated cyclodextrins have recently emerged as potential candidates for producing host–induced guest aggregation with properties better than p-sulfonatocalixarenes that have previously shown numerous applications involving the phenomena of host-induced guest aggregation. In the class of sulfated cyclodextrins (SCD), sulfated β-cyclodextrin (β-SCD) remains the most extensively investigated host molecule. Although it is assumed that the host-induced guest aggregation is predominantly an outcome of interaction of the guest molecule with the charges on the exterior of SCD cavity, it has not been deciphered whether the variation in the cavity size will make a difference in the efficiency of host-induced guest-aggregation process. In this investigation, we present a systematic study of host–induced guest aggregation of a cationic molecular rotor dye, Thioflavin T (ThT) with three different sulfated cyclodextrin molecules, α-SCD, β-SCD and γ-SCD, which differ in their cavity size, using steady-state emission, ground-state absorption and time-resolved emission measurements. The obtained photophysical properties of ThT, upon interaction with different SCD molecules, indicate that the binding strength of ThT with different SCD molecules correlate with the cavity size of the host molecule, giving rise to the strongest complexation of ThT with the largest host molecule (γ-SCD). The binding affinity of ThT towards different host molecules has been supported by molecular docking calculations. The results obtained are further supported with the temperature and ionic strength dependent studies performed on the host-guest complex. Our results indicate that for host–induced guest aggregation, involving oppositely charged molecules, the size of the cavity also plays a crucial role beside the charge density on the exterior of host cavity.  相似文献   

18.
Proteins interact with each other to fulfill their functions. The importance of weak protein–protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra‐weak interactions remain to be characterized. Phosphorylation can take place via a KD≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel GdIII‐based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra‐weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro‐ to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra‐weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration.  相似文献   

19.
Linear copolymers have been developed which carry binding sites tailored for sulfated sugars. All binding monomers are based on the methacrylamide skeleton and ensure statistical radical copolymerization. They are decorated with o-aminomethylphenylboronates for covalent ester formation and/or alkylammonium ions for noncovalent Coulomb attraction. Alcohol sidechains maintain a high water solubility; a dansyl monomer was constructed as a fluorescence label. Statistical copolymerization of comonomer mixtures with optimized ratios was started by AIBN (AIBN=2,2'-azoisobutyronitrile) and furnished water-soluble comonomers with an exceptionally high affinity for glucosaminoglucans. Heparin can be quantitatively detected with an unprecedented 30 nM sensitivity, and a neutral polymer without any ammonium cation is still able to bind the target with almost micromolar affinity. From this unexpected result, we propose a new binding scheme between the boronate and a sulfated ethylene glycol or aminoethanol unit. Although the mechanism of heparin binding involves covalent boronate ester formation, it can be completely reversed by protamine addition, similar to heparin's complex formation with antithrombin III.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号