首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
谢美然  韩会景  金瓯悦  杜春霞 《化学学报》2013,71(10):1441-1445
基于七异丁基-胺丙基-多面体低聚倍半硅氧烷(POSS-NH2)与溴丁烯或溴代十一烯反应, 一步法合成了含POSS侧基的两种杂化二烯烃. 以钌卡宾络合物为催化剂的非环二烯烃易位(ADMET)聚合, 短链二烯烃未能发生, 而长链二烯烃能顺利实现. 将杂化二烯烃转变为离子型杂化二烯烃, 其ADMET聚合活性较高, 随着反应时间延长, 聚合物分子量明显增大, 分子量分布变窄, 体现了逐步聚合的特征. 核磁共振分析揭示了聚合物的不饱和结构和聚合反应的变化过程. 主链不饱和的无定形聚合物, 经氢化作用转变为饱和的离子型杂化聚乙烯, POSS基团精确地连接在聚乙烯骨架的侧位上, 且POSS基团和聚乙烯骨架均表现出较强的结晶能力. 这种离子型杂化聚乙烯具有球形的单分子或聚集形态, 可直接构筑纳米尺度的聚合物材料.  相似文献   

2.
Nano sized crystalline particles/polymer hybrids were synthesized form designed metal-organic precursors. The newly developed method is composed of the synthesis of organic matrix by polymerization and the in situ nucleation and growth of crystalline oxide particles in the organic matrix below 100°C. The design of metal-organic precursor modified with polymerizable ligand and the selection of reaction conditions does influence the size and crystallinity of ceramic particles in organic matrix. The nano-sized magnetic particle/polymer hybrid exhibits the interesting feature of superparamagnetism and quantum size effect. The crystalline particles of BaTiO3/, PbTiO3/, and KNbO3/polymer hybrids behave to be dielectric and show the typical electro-rheological behavior.  相似文献   

3.
A novel method was developed to synthesize organic–inorganic hybrid hollow sub‐microspheres (HHSs) through the addition of colloidal SiO2. The hydrolysis rate of 3‐(methacryloyloxy)propyltrimethoxysilane (MPS) was accelerated by SiO2 particles; meanwhile, the condensation rate of the hydrolytic species was decelerated. Thus, the hydrolytic monomers and oligomers of MPS were preserved as emulsifiers. These emulsifiers can then emulsify the isopentyl acetate (PEA) to form a steady O/W emulsion. The HHSs were produced by subsequent free radical polymerization and removal of the oil core. The hydrolytic MPS acted as emulsifiers and polymerizable monomers at the emulsification and polymerization stage, respectively. Thus, extra emulsifiers, co‐emulsifiers, and organic monomers were omitted, which simplified the synthesis process. The good dispersion of HHSs in water and oil, as well as the EDX results, indicated the organic–inorganic hybrid structure of HHSs.  相似文献   

4.
Heteroatom functionalization on a graphene surface can endow the physical and structural properties of graphene. Here, a one-step in situ polymerization method was used for the noncovalent functionalization of a graphene surface with poly-N-vinyl-2-pyrrolidone (PNVP) and the exfoliation of graphite into graphene sheets. The obtained graphene/poly-N-vinyl pyrrolidone (GPNVP) composite was thoroughly characterized. The surface morphology of GPNVP was observed using field emission scanning electron microscopy and high-resolution transmission electron microscopy. Raman spectroscopy and X-ray diffraction studies were carried out to check for the exfoliation of graphite into graphene sheets. Thermogravimetric analysis was performed to calculate the amount of PNVP on the graphene surface in the GPNVP composite. The successful formation of the GPNVP composite and functionalization of the graphene surface was confirmed by various studies. The cyclic voltammetry measurement at different scan rates (5–500 mV/s) and electrochemical impedance spectroscopy study of the GPNVP composite were performed in the typical three-electrode system. The GPNVP composite has excellent rate capability with the capacitive property. This study demonstrates the one-pot preparation of exfoliation and functionalization of a graphene surface with the heterocyclic polymer PNVP; the resulting GPNVP composite will be an ideal candidate for various electrochemical applications.  相似文献   

5.
6.
Core–shell microparticles that consist of poly(vinyl neodecanoate) (VND) crosslinked with poly(ethylene glycol dimethacrylate) (EGDMA) as the core and poly(ethylene glycol methacrylate) (PEGMA) ( = 360 or = 526 g · mol?1) as the shell have been synthesized using suspension polymerization by a conventional free radical polymerization process. Interfacial tension and stability tests show that PEGMA acts as an amphiphilic macromonomer and is located on the oil/water interface of the suspension system, thus forming an outer layer during the polymerization. Kinetic studies of the monomers' conversion of VND, EGDMA, and PEGMA have been carried out using 1H NMR spectroscopy. EGDMA and PEGMA were found to have faster reaction rates compared to VND. Moreover, scanning electron microscopy showed that the polymerization of these particles starts from the shell and finishes towards the core. Consequently, the resulting microsphere is found to have a multi‐layer structure. Biotin was covalently bound to the surface by the PEGMA hydroxy groups. Conjugation of biotin with streptavidin PE (phycoerythrin) was subsequently carried out. Confocal microscopy was used to confirm the presence of fluorescing streptavidin. The amount of avidin conjugated to the microspheres was calculated by the release of a 2‐(4‐hydroxyphenylazo)benzoic acid/avidin complex using UV/vis spectroscopy. One avidin molecule was found to occupy 7 nm2 on the surface of the microspheres.

  相似文献   


7.
A novel route to prepare core–shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO3 by an in situ RAFT polymerization. The core–shell structured PS/BaTiO3 nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high‐performance nanocomposites used in energy‐storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号