首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A heteroatom‐rich 3D noninterpenetrating metal–organic framework (MOF) Cd‐EDDA constructed from an ethylene glycol ether bridging tetracarboxylate ligand H4EDDA (5,5′‐(ethane‐1,2‐diylbis(oxy))diisophthalic acid) shows good chemical resistance to both acidic and alkaline solutions with a pH ranging from 2.0 to 12.2. There is a corresponding ratiometric luminescence response to pH from 2.0 to 11.5, and the sensing mechanism is also discussed through ion chromatography and molecular force field‐based calculations. Importantly, the probe can easily be regenerated simply by modulating the pH of the solution, thus being the first example of a regenerable MOF‐based ratiometric luminescent probe for pH.  相似文献   

2.
Sensors and sensitivity : A highly luminescent microporous metal–organic framework, [Zn2(bpdc)2(bpee)] (bpdc=4,4′‐biphenyldicarboxylate; bpee=1,2‐bipyridylethene), is capable of very fast and reversible detection of the vapors of the nitroaromatic explosive 2,4‐dinitrotoluene and the plastic explosive taggant 2,3‐dimethyl‐2,3‐dinitrobutane, through redox fluorescence quenching with unprecedented sensitivity (see spectra).

  相似文献   


3.
4.
5.
6.
7.
A nanoscale terbium‐containing metal–organic framework ( nTbL ), with a layer‐like structure and [H2NMe2]+ cations located in the framework channels, was synthesized under hydrothermal conditions. The structure of the as‐prepared sample was systematically confirmed by powder XRD and elemental analysis; the morphology was characterized by field‐emission SEM and TEM. The photoluminescence studies revealed that rod‐like nTbL exhibited bright‐green emission, corresponding to 5D47FJ (J=6–3) transitions of the Tb3+ ion under excitation. Further sensing measurements revealed that as‐prepared nTbL could be utilized as a multiresponsive luminescent sensor, which showed significant and exclusive detection ability for Fe3+ ions and phenylmethanol. These results highlight the practical applications of lanthanide‐containing metal–organic frameworks as fluorescent probes.  相似文献   

8.
The spectroscopy and dynamics of a series of Zr‐based MOFs in dichloromethane suspension are reported. These Zr‐NADC MOFs were constructed by using different mixtures of 2,6‐naphthalenedicarboxylate (NDC) and 4‐amino‐2,6‐naphthalenedicarboxylate (NADC) as organic linkers. The fraction of NADC relative to NDC in these heterolinker MOFs ranges from 2 to 35 %. The results indicate two competitive photoprocesses: NDC excimer formation and an energy transfer (ET) from excited NDC linkers to NADC linkers. Increasing the fraction of NADC linkers in the Zr‐NADC nanostructure decreases the mean time constant of NDC excimer formation, while the NADC emission intensity experiences a drop at the highest fraction of this linker in the MOF. The first observation is explained by an increase in the energy‐transfer probability between the two linkers, and the second by emission quenching in the NADC linkers due to ultrafast charge transfer assisted by the amino group. Femtosecond time‐resolved emission studies showed that the ET process (recorded as decaying and rising components) from excited NDC to NADC takes place in 1.2 ps. Direct excitation of the NADC linkers (at 410 nm) shows a decaying, but not rising, component of 250–480 fs, which could reflect the formation of a nonemissive charge‐separation state. The results show that by using MOFs having heterolinkers it is possible to trigger and tune excimer formation and ET processes.  相似文献   

9.
10.
11.
Mixing molecular building blocks in the solid solution manner is a valuable strategy to obtain structures and properties in between the isostructural parent metal–organic frameworks (MOFs). We report nonlinear/synergistic solid‐solution effects using highly related yet non‐isostructural, phosphorescent CuI triazolate frameworks as parent phases. Near the phase boundaries associated with conformational diversity and ligand heterogeneity, the porosity (+150 %) and optical O2 sensitivity (410 times, limit of detection 0.07 ppm) can be drastically improved from the best‐performing parent MOFs and even exceeds the records hold by precious‐metal complexes (3 ppm) and C70 (0.2 ppm).  相似文献   

12.
2D conductive metal–organic frameworks (2D c‐MOFs) feature promising applications as chemiresistive sensors, electrode materials, electrocatalysts, and electronic devices. However, exploration of the spin‐polarized transport in this emerging materials and development of the relevant spintronics have not yet been implemented. In this work, layer‐by‐layer assembly was applied to fabricate highly crystalline and oriented thin films of a 2D c‐MOF, Cu3(HHTP)2, (HHTP: 2,3,6,7,10,11‐hexahydroxytriphenylene), with tunable thicknesses on the La0.67Sr0.33MnO3 (LSMO) ferromagnetic electrode. The magnetoresistance (MR) of the LSMO/Cu3(HHTP)2/Co organic spin valves (OSVs) reaches up to 25 % at 10 K. The MR can be retained with good film thickness adaptability varied from 30 to 100 nm and also at high temperatures (up to 200 K). This work demonstrates the first potential applications of 2D c‐MOFs in spintronics.  相似文献   

13.
We present a new metal–organic framework (MOF) built from lanthanum and pyrazine‐2,5‐dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2] ? 2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single‐crystal X‐ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g?1 MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.  相似文献   

14.
A unique AlIII‐based metal–organic framework (467‐MOF) with two types of square channels has been designed and synthesized by using a flexible tricarboxylate ligand under solvothermal conditions. 467‐MOF exhibits superior thermal and chemical stability and, moreover, shows high CO2 sorption selectivity over H2, with a selectivity, based on the ideal adsorbed solution theory (IAST) of approximately 45 at 273 or 293 K. Furthermore, its solvent‐dependent photoluminescence makes it an applicable sensor in the detection of nitrobenzene explosives through fluorescence quenching.  相似文献   

15.
A bio‐inspired design of using metal–organic framework (MOF) microcrystals with well‐defined multi‐shelled hollow structures was used as a matrix to host multiple guests including molecules and nanoparticles at separated locations to form a hierarchical material, mimicking biological structures. The interactions such as energy transfer (ET) between different guests are regulated by precisely fixing them in the MOF shells or encapsulating them in the cavities between the MOF shells. The proof‐of‐concept design is demonstrated by hosting chromophore molecules including rhodamine 6G (R6G) and 7‐amino‐4‐(trifluoromethyl)coumarin (C‐151), as well as metal nanoparticles (Pd NPs) into the multi‐shelled hollow zeolitic imidazolate framework‐8 (ZIF‐8). We could selectively establish or diminish the guest‐to‐framework and guest‐to‐guest ET. This work provides a platform to construct complex multifunctional materials, especially those need precise separation control of multi‐components.  相似文献   

16.
17.
18.
The hydrothermal reaction of Zn2+ ions with a mixture of two ligands, Hcptpy and H3btc (Hcptpy=4‐(4‐carboxyphenyl)‐2,2′:4′,4′′‐terpyridine; H3btc=1,3,5‐benzenetricarboxylic acid), led to the formation of a 3D metal–organic framework (MOF) with 1D channels, [Zn2(cptpy)(btc)(H2O)]n ( 1 ), which was structurally characterized by using single‐crystal X‐ray diffraction (SXRD). In MOF 1 , two independent Zn2+ ions were interconnected by btc3? ligands to form a 1D chain, whilst adjacent Zn2+ ions were alternately bridged by cptpy? ligands to generate a 2D sheet, which was further linked by 1D chains to form a 3D framework with a new (3,3,4,4)‐connected topology. Furthermore, compound 1 also exhibited excellent stability towards air and water and, more importantly, luminescence experiments indicated that it could serve as a probe for the sensitive detection of paraquat (PAQ) and Fe3+ ions in aqueous solution.  相似文献   

19.
Materials with surfaces that can be switched from high/superhydrophobicity to superhydrophilicity are useful for myriad applications. Herein, we report a metal–organic framework (MOF) assembled from ZnII ions, 1,4‐benzenedicarboxylate, and a hydrophobic carborane‐based linker. The MOF crystal‐surface can be switched between hydrophobic and superhydrophilic through a chemical treatment to remove some of the building blocks.  相似文献   

20.
The development of catalysts capable of fast, robust C?H bond amination under mild conditions is an unrealized goal despite substantial progress in the field of C?H activation in recent years. A Mn‐based metal–organic framework (CPF‐5) is described that promotes the direct amination of C?H bonds with exceptional activity. CPF‐5 is capable of functionalizing C?H bonds in an intermolecular fashion with unrivaled catalytic stability producing >105 turnovers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号