首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reaction rate of the self‐metalation of free‐base tetraphenylporphyrins (TPPs) on Cu(111) increases with the number of cyano groups (n=0, 1, 2, 4) attached at the para positions of the phenyl rings. The findings are based on isothermal scanning tunneling microscopy (STM) measurements. At room temperature, all investigated free‐base TPP derivatives adsorb as individual molecules and are aligned with respect to densely packed Cu substrate rows. Annealing at 400 K leads to the formation of linear dimers and/or multimers via CN‐Cu‐CN bonds, accompanied by self‐metalation of the free‐base porphyrins following a first‐order rate equation. When comparing the non‐cyano‐functionalized and the tetracyano‐functionalized molecules, we find a decrease of the reaction rate by a factor of more than 20, corresponding to an increase of the activation energy from 1.48 to 1.59 eV. Density functional theory (DFT) calculations give insights into the influence of the peripheral electron‐withdrawing cyano groups and explain the experimentally observed effects.  相似文献   

3.
4.
The metalation of the tetradentate molecule pyrphyrin by copper substrate atoms on a Cu(111) surface is studied. Pyrphyrin, in contrast to porphyrin, consists of four fused pyridine groups instead of pyrrol groups. Using thermal desorption spectroscopy (TDS ) and N 1s X‐ray photoelectron spectroscopy (XPS ), we show that metalation of the monolayer of pyrphyrin with Cu atoms from the Cu(111) surface occurs at 377 K. The formation of an extended two‐dimensional (2D) network is observed with scanning tunneling microscopy (STM ). A honeycomb‐like lattice of metalated pyrphyrin molecules is formed by intermolecular connection via the two cyano groups at the periphery of pyrphyrin as well as Cu adatoms. Dehydrogenation at the periphery of the molecule is observed during annealing at 520 K. The surface‐adsorbed metal‐pyrphyrin has the potential to serve as a molecular catalyst.  相似文献   

5.
6.
The modification of metal electrode surfaces with functional organic molecules is an important part of organic electronics. The interaction of the buckminsterfullerene fragment molecule pentaindenocorannulene with a Cu(100) surface is studied by scanning tunneling microscopy, dispersion-enabled density functional theory, and force field calculations. Experimental and theoretical methods suggest that two adjacent indeno groups become oriented parallel to the surface upon adsorption under mild distortion of the molecular frame. The binding mechanism between molecule and surface is dominated by strong electrostatic interaction owing to Pauli repulsion. Two-dimensional aggregation at room temperature leads to a single lattice structure in which all molecules are oriented unidirectionally. Their relative arrangement in the lattice suggests noncovalent intermolecular interaction through C−H⋅⋅⋅π bonding.  相似文献   

7.
Scanning tunneling microscopy (STM) combined with density functional theory (DFT) calculations were applied in studying the anisotropic adsorption and condensation of tert‐butylamine (t‐BA) molecules in the vicinity of the steps on the Cu(111) surface. The preferential adsorption at the upper step edges and uneven distribution of t‐BA in the vicinity of the steps illustrate the asymmetric electronic structure of the surface steps. Our observation demonstrates that the adsorption and diffusion of a polar molecule would be significantly mediated by steps on metal surfaces due to the molecule–step interaction and the intermolecular interactions.  相似文献   

8.
We study the interaction and metalation reaction of a free base 5,10,15,20-terakis(4-cyanophenyl)porphyrin (2HTCNPP) with post-deposited Zn atoms and the targeted reaction product Zn-5,10,15,20-terakis(4-cyanophenyl)porphyrin (ZnTCNPP) on a Ag(111) surface. The investigations are performed with scanning tunneling microscopy at room temperature after Zn deposition and subsequent heating. The goal is to obtain further insights in the metalation reaction and the influence of the cyanogroups on this reaction. The interaction of 2HTCNPP with post-deposited Zn leads to the formation of three different 2D ordered island types that coexist on the surface. All contain a new species with a bright appearance, which increases with the amount of post-deposited Zn. We attribute this to metastable SAT (“sitting atop”) complexes formed by Zn and the macrocycle, that is, an intermediate in the metalation reaction to ZnTCNPP, which occurs upon heating to 500 K. Interestingly, the activation barrier for the successive reaction of the SAT complex to the metalated ZnTCNPP species can also be overcome by a voltage pulse applied to the STM tip.  相似文献   

9.
In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self‐assembled monolayer (SAM) of racemic 2‐butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom‐bound motifs plus two RS species bound directly to face‐centered‐cubic and hexagonally close‐packed sites. This is the first time that these competing head‐group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30 %), much larger than that for enantiomerically resolved 2‐butanethiol or secondary‐branched butanethiol (25 %) and near that for linear‐chain 1‐butanethiol (33 %).  相似文献   

10.
11.
12.
13.
Formation of a hydrogen‐bond network via an amide group is a key driving force for the nucleation–elongation‐type self‐assembly that is often seen in biomolecules and artificial supramolecular assemblies. In this work, rod‐coil‐like aromatic compounds bearing an amide ( 1 a – 3 a ) or urea group ( 1 u – 3 u ) were synthesized, and their self‐assemblies on a 2‐D surface were investigated by scanning tunneling microscopy (STM). According to the quantitative analysis of the concentration dependence of the surface coverage, it was revealed that the strength of the hydrogen bond (i.e., amide or urea) and the number of non‐hydrogen atoms in a molecular component (i.e., size of core and length of alkyl side chain) play a primary role in determining the stabilization energy during nucleation and elongation processes of molecular ordering on the HOPG surface.  相似文献   

14.
Two‐dimensional metal–organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene‐4,5,9,10‐tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of an extended metal–organic supramolecular structure. Each copper adatom coordinates to two ketone ligands of two neighbouring PTO molecules, forming chains that are linked together into large islands through secondary van der Waals interactions. Deposition of iron atoms leads to a transformation of this assembly resulting from the substitution of the metal centres. Density functional theory calculations reveal that the driving force for the metal substitution is primarily determined by the strength of the ketone–metal bond, which is higher for Fe than for Cu. This second class of nanostructures displays a structural dependence on the rate of iron deposition.  相似文献   

15.
The metalation behaviors of 5,15‐diphenylporphyrin (2H‐DPP) on Pd(111) and Cu/Pd(111) have been investigated using scanning tunneling microscopy and density functional calculations. We show that 2H‐DPP molecules deposited on Pd(111) surface form Pd‐DPP with a proportion of about 75% already at room temperature (RT). This is in contrast to non‐metalation adsorption of 2H‐DPP on Cu–Pd alloy at RT. Annealing to 323 K facilitates the metalation of 2H‐DPP on Cu–Pd alloy island. The comparison of the results indicates that the metalation of 2H‐DPP calls for both enough surface free energy of approaching N? H bond and enough reactivity of breaking N? H bond. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Like pearls on a string , molecular building blocks have been preorganized and then interlinked on a surface (see STM images). In this way both the supramolecular self‐assembly of the reactants as well as the subsequent thermal activation to release the protecting group are controlled.

  相似文献   


17.
This work describes an innovative concept for the development of organized molecular systems based on the template effect of the pre‐structured semi‐conductive SmSi(111) interface. This substrate is selected because Sm deposition in the submonolayer range leads to a 8×2‐reconstruction, which is a well‐defined one‐dimensional semi‐metallic structure. Adsorption of aromatic molecules [1,4‐di‐(9‐ethynyltriptycenyl)‐benzene] on SmSi(111)‐ 8×2 and Si(111)‐7×7 interfaces is investigated by scanning tunneling microscopy (STM) at room temperature. Density functional theory (DFT) and semi‐empirical (ASED+) calculations define the nature of the molecular adsorption sites of the target molecule on SmSi as well as their self‐alignment on this interface. Experimental data and theoretical results are in good agreement.  相似文献   

18.
An appropriate understanding of the process of self‐assembly is of critical importance to tailor nanostructured order on 2D surfaces with functional molecules. Photochromic compounds are promising candidates for building blocks of advanced photoresponsive surfaces. To investigate the relationship between molecular structure and the mechanism of ordering formation, 2‐thienyl‐type diarylethenes with various lengths of alkyl side chains linked through an amide or ester group were synthesized. Their self‐assemblies at a liquid/solid interface were investigated by scanning tunneling microscopy (STM). The concentration dependence of the surface coverage was analyzed by using a cooperative model for a 2D surface based on two characteristic parameters: the nucleation equilibrium constant (Kn) and the elongation equilibrium constant (Ke). The following conclusions can be drawn. 1) The concentration at which a stable 2D molecular ordering is observed by STM exponentially decreases with increasing length of the alkyl chain. 2) Compounds bearing amide groups have higher degrees of cooperativity in self‐assembly on 2D surfaces (i.e., σ, which is defined as Kn/Ke) than compounds with ester groups. 3) The self‐assembly process of the open‐ring isomer of an ester derivative is close to isodesmic, whereas that of the closed‐ring isomer is cooperative because of the difference in equilibrium constants for the nucleation step (i.e., Kn) between the two isomers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号