首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Helically chiral N,N,O,O‐boron chelated dipyrromethenes showed solution‐phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λem(max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5‐ortho‐phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|glum| up to 4.7 ×10?3) and fluorescence quantum yields (ΦF up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL‐based bioimaging.  相似文献   

3.
Four aggregation‐induced emission (AIE)‐active chiral binaphthyl‐based molecules, (R/S)‐ 1 and (R/S)‐ 2 , were designed and synthesized. Interestingly, all of them can exhibit reversal circularly polarized luminescence (CPL) signals from solution to aggregation, which could be attributed to the different dihedral angle of binaphthyl units from cis‐conformation in pure THF solution to trans‐conformation in THF/water mixtures.  相似文献   

4.
New types of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes were synthesized from racemic 4,12‐dihydroxy[2.2]paracyclophane as the starting compound. Regioselective dibromination and transformation afforded a series of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes, which can be used as chiral building blocks. In this study, left‐ and right‐handed double helical structures were constructed via chemoselective Sonogashira–Hagihara coupling. The double helical compounds were excellent circularly polarized luminescence (CPL) emitters with large molar extinction coefficients, good photoluminescence quantum efficiencies, and large CPL dissymmetry factors.  相似文献   

5.
The Sonogashira coupling of γ‐CD‐encapsulated alkynylpyrenes with terphenyl‐type stopper molecules gave a doubly alkynylpyrene‐threaded [4]rotaxane. The rotaxane showed only excimer emission, with a high fluorescence quantum yield of Φf=0.37, arising from the spatially restricted excimer within the cavity of the γ‐CD. The excimer emission suffered little from self‐quenching up to a concentration of 1.5×10?5 M and was circularly polarized with a high glum value of ?1.5×10?2. The strong circularly polarized luminescence may result from the two stacked pyrenes existing in the rotaxane in an asymmetrically twisted manner.  相似文献   

6.
A dimeric tetrathiafulvalene installed into a chiral pseudo‐ortho‐[2.2]paracyclophane framework was synthesized as a novel chiral electrochromic material. This compound exhibited pronounced chiroptical properties in the UV‐Vis‐NIR range depending on its redox states without racemization. Each enantiomer was examined as a chiral dopant for nematic liquid crystals (LCs), and the induced helicity of the LC solvent was in accord with that of the tetrathiafulvalene compound.  相似文献   

7.
Two perylene diimide (PDI) enantiomers ( d/l ‐PDI ) incorporating the d /l ‐alanine moiety have been designed and synthesized. d/l ‐PDI in chloroform displays bright‐yellow fluorescence that is redshifted to orange‐red when the solvent contains a methanol fraction of 99 vol %. No circular dichroism (CD) or circularly polarized luminescence (CPL) signals were observed for d/l ‐PDI enantiomers in CHCl3. Interestingly, the d/l ‐PDI enantiomers exhibit clear mirror‐image Cotton effects and CPL emission in the aggregate state. The optical anisotropy factor (glum) is as high as 0.02 at fm=99 %, which can be attributed to self‐assembly through intermolecular π–π interactions in the aggregate state.  相似文献   

8.
Four chiral 1,2‐diaminocyclohexane (DACH)‐based molecules (R,R/S,S‐ 2 and R,R/S,S‐ 4 ) incorporating 1,8‐naphthalimide fluorophores exhibit strong circularly polarized luminescence (CPL) emission signals in common organic solvents. Interestingly, the reversed CPL signals can be observed in the aggregated state, which is due to the orderly aggregation.  相似文献   

9.
10.
11.
Planar chiral [2]‐ and [3]rotaxanes constructed from pillar[5]arenes as wheels and pyridinium derivatives as axles were obtained in high yield using click reactions. The process of rotaxane formation was diastereoselective; the obtained [2]rotaxane was a racemic mixture consisting of (pS, pS, pS, pS, pS) and (pR, pR, pR, pR, pR) forms of the per‐ethylated pillar[5]arene ( C2 ) wheel, and other possible types of the [2]rotaxane did not form. Isolation of the enantiopure [2]rotaxanes with one axle through (pS, pS, pS, pS, pS)‐ C2 or (pR, pR, pR, pR, pR)‐ C2 wheels was accomplished. Furthermore, pillar[5]arene‐based [3]rotaxane was successfully synthesized by attachment of two pseudo [2]rotaxanes onto a bifunctional linker. [3]Rotaxane formed in a 1:2:1 mixture with one axle threaded through two (pS, pS, pS, pS, pS)‐ C2 , one (pS, pS, pS, pS, pS)‐ C2 and one (pR, pR, pR, pR, pR)‐ C2 (meso form), or two (pR, pR, pR, pR, pR)‐ C2 wheels. The [3]rotaxane enantiomers and the meso form were successfully isolated using appropriate chiral HPLC column chromatography. The procedure developed in this study is the starting point for the creation of pillar[5]arene‐based interlocked molecules.  相似文献   

12.
A series of fluorescent “push‐pull” tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited‐state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the “push–pull” character, which was enhanced by further introduction of an electron‐releasing Me2N group or an electron‐withdrawing NC group onto the quinoxaline unit (denoted as Me2N‐QTTH and NC‐QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL) were achieved. In particular, the maximum ΦFL of Me2N‐QTTH was 0.43 in benzene (NC‐QTTH: ΦFL=0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL=0.02). These enhancements were also explained by kinetic discussion of the excited‐state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right‐handed and left‐handed circularly polarized light) was estimated to be 3.0×10?3 for NC‐QTTH.  相似文献   

13.
14.
A boost from the branches : Incorporation of the dithieno[3,2‐b:2′,3′‐d]phosphole system as a core in oligo(phenylenevinylene) dendrimers (an example is shown here) provides materials that exhibit energy‐transfer features relaying incoming photons from the dendrons towards the core, which in turn shows enhanced emission intensity. The optical properties and self‐assembly features of the dendrimers can be impacted by the terminal groups (‐H, ‐CF3, or ‐NPh2) employed.

  相似文献   


15.
Novel π‐conjugated topologies based on oligothiophenes and phenanthroline have been assembled by combining their outstanding electronic and structural benefits with the specific properties of the topological structure. Macrocycles and catenanes are prepared by using an optimized protocol of transition metal‐templated macrocyclization followed by efficient Pd‐catalyzed cross‐coupling reaction steps. By using this method, [2]catenanes comprising two interlocked π‐conjugated macrocycles with different ring sizes have been synthesized. The structures of the [2]catenanes and corresponding macrocycles are confirmed by detailed 1H NMR spectroscopy and high resolution mass spectrometry. Single crystal X‐ray structural analysis of the quaterthiophene–diyne macrocycle affords important insight into the packing features and intermolecular interaction of the new systems. The fully conjugated interlocked [2]catenanes are fully characterized by spectroscopic and electrochemical measurements.  相似文献   

16.
The physicochemical properties of cationic dioxa ( 1 ), azaoxa ( 2 ), and diaza ( 3 ) [6]helicenes demonstrate a much higher chemical stability of the diaza adduct 3 (pKR+=20.4, =?0.72 V) compared to its azaoxa 2 (pKR+=15.2, =?0.45 V) and dioxa 1 (pKR+=8.8, =?0.12 V) analogues. The fluorescence of these cationic chromophores is established, and ranges from the orange to the far‐red regions. From 1 to 3 , a bathochromic shift of the lowest energy transitions (up to 614 nm in acetonitrile) and an enhancement of the fluorescence quantum yields and lifetimes (up to 31 % and 9.8 ns, respectively, at 658 nm) are observed. The triplet quantum yields and circularly polarized luminescence are also reported. Finally, fine tuning of the optical properties of the diaza [6]helicene core is achieved through selective and orthogonal post‐functionalization reactions (12 examples, compounds 4 – 15 ). The electronic absorption is modulated from the orange to the far‐red spectral range (560–731 nm), and fluorescence is observed from 591 to 755 nm with enhanced quantum efficiency up to 70 % (619 nm). The influence of the peripheral auxochrome substituents is rationalized by first‐principles calculations.  相似文献   

17.
18.
This work describes the syntheses, crystal structures, photophysical properties, and electro‐chemical analyses of benzo[k]fluoranthene‐based linear acenes, together with ab initio density functional theory computations on them. The molecules were prepared in generally moderate to good yields through Pd‐catalyzed cycloadditions between 1,8‐diethynylnaphthalene derivatives and aryl iodides. This protocol is simpler and more efficient than conventional methods. The scope and limitations of this reaction were examined. The structures of compounds 4 hb , 15 ac , 17 ab , 19 ac , and 24 je were determined by X‐ray analysis; they are either bent or twisted, rather than planar. The photophysical and electrochemical properties of these cycloadducts were also investigated and compared with computational predictions based on density functional theory.  相似文献   

19.
We report the synthesis, characterization, redox behavior, and n‐channel organic field‐effect (OFET) characteristics of a new class of thieno[3,2‐b]thiophene‐diketopyrrolopyrrole‐based quinoidal small molecules 3 and 4 . Under ambient atmosphere, solution‐processed thin‐film transistors based on 3 and 4 exhibit maximum electron mobilities up to 0.22 and 0.16 cm2 V?1 s?1, respectively, with on‐off current ratios (Ion/Ioff) of more than than 106. Cyclic voltammetry analysis showed that this class of quinoidal derivatives exhibited excellent reversible two‐stage reduction behavior. This property was further investigated by a stepwise reductive titration of 4 , in which sequential reduction to the radical anion and then the dianion were observed.  相似文献   

20.
A carbazole‐based diaza[7]helicene, 2,12‐dihexyl‐2,12‐diaza[7]helicene ( 1 ), was synthesized by a photochemical synthesis and its use as a deep‐blue dopant emitter in an organic light‐emitting diode (OLED) was examined. Compound 1 exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td=372.1 °C) and a high glass‐transition temperature (Tg, up to 203.0 °C). Single‐crystal structural analysis of the crystalline clathrate ( 1 )2 ? cyclohexane along with a theoretical investigation revealed a non‐planar‐fused structure of compound 1 , which prevented the close‐packing of molecules in the solid state and kept the molecule in a good amorphous state, which allowed the optimization of the properties of the OLED. A device with a structure of ITO/NPB (50 nm)/CBP:5 % 1 (30 nm)/BCP (20 nm)/Mg:Ag (100 nm)/Ag (50 nm) showed saturated blue light with Commission Internationale de L’Eclairage (CIE) coordinates of (0.15, 0.10); the maximum luminance efficiency and brightness were 0.22 cd A?1 (0.09 Lm W?1) and 2365 cd m?2, respectively. This new class of helicenes, based on carbazole frameworks, not only opens new possibilities for utilizing helicene derivatives in deep‐blue‐emitting OLEDs but may also have potential applications in many other fields, such as molecular recognition and organic nonlinear optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号