首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
New aluminium scorpionate based complexes have been prepared and used for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Bimetallic aluminium(heteroscorpionate) complexes 9 – 14 were synthesised in very high yields. The single‐crystal X‐ray structures of 12 and 13 confirm an asymmetric κ2‐NO‐μ‐O arrangement in a dinuclear molecular disposition. These bimetallic aluminium complexes were investigated as catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide in the presence of ammonium salts. Under the optimal reaction conditions, complex 9 in combination with tetrabutylammonium bromide acts as a very efficient catalyst system for the conversion of both monosubstituted and internal epoxides into the corresponding cyclic carbonates showing broad substrate scope. Complex 9 and tetrabutylammonium bromide is the second most efficient aluminium‐based catalyst system for the reaction of internal epoxides with carbon dioxide. A kinetic study has been carried out and showed that the reactions were first order in complex 9 and tetrabutylammonium bromide concentrations. Based on the kinetic study, a catalytic cycle is proposed.  相似文献   

2.
AlIII complexes of amino‐tris(phenolate) ligand scaffolds have been prepared to attain highly Lewis acidic catalysts. Combination of the aforementioned systems with ammonium halides provides highly active catalysts for the synthesis of organic carbonates through addition of carbon dioxide to oxiranes with initial turnover frequencies among the highest reported to date within the context of cyclic carbonate formation. Density functional theory (DFT) studies combined with kinetic data provides a rational for the relative high activity found for these AlIII complexes, and the data are consistent with a monometallic mechanism. The activity and versatility of these AlIII complexes has also been evaluated against some state‐of‐the‐art catalysts and the combined results compare favorably in terms of catalyst construction, stability, activity, and applicability.  相似文献   

3.
Bifunctional metalloporphyrins with quaternary ammonium bromides (nucleophiles) at the meta, para, or ortho positions of meso‐phenyl groups were synthesized as catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide under solvent‐free conditions. The meta‐substituted catalysts exhibited high catalytic performance, whereas the para‐ and ortho‐substituted catalysts showed moderate and low activity, respectively. DFT calculations revealed the origin of the advantage of the meta‐substituted catalyst, which could use the flexible quaternary ammonium cation at the meta position to stabilize various anionic species generated during catalysis. A zinc(II) porphyrin with eight nucleophiles at the meta positions showed very high catalytic activity (turnover number (TON)=240 000 at 120 °C, turnover frequency (TOF)=31 500 h?1 at 170 °C) at an initial CO2 pressure of 1.7 MPa; catalyzed the reaction even at atmospheric CO2 pressure (balloon) at ambient temperature (20 °C); and was applicable to a broad range of substrates, including terminal and internal epoxides.  相似文献   

4.
5.
Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h?1, respectively, for the magnesium catalyst, and 310 000 and 40 000 h?1, respectively, for the zinc catalyst. Results obtained with a zinc/free‐base hybrid diporphyrin catalyst demonstrated that the Br? ions on the adjacent porphyrin moiety also function as nucleophiles.  相似文献   

6.
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.  相似文献   

7.
8.
Metal complexes of salen ligands are an important class of compounds, and they have been widely studied in the past. Among their successful catalytic applications, the synthesis of cyclic carbonates by the coupling reaction of epoxides with CO(2) has received increased attention; this is mostly due to the importance of using a greenhouse gas as a feedstock for the synthesis of useful molecules. Herein the most relevant past and present research surrounding this topic is presented.  相似文献   

9.
In this work, 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU), 1,5‐diazabicyclo[4.3.0]‐5‐nonene (DBN), and imidazole (MIM)‐derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition reactions of carbon dioxide (CO2) with several kinds of epoxides to form cyclic carbonates. The DBU derived bromide ionic liquid system was found to have the best catalytic activity among all the tested ILs. The influences of reaction conditions (including temperature, pressure and reaction time) on the reaction of CO2 to propylene oxide (PO) were studied to show the best conditions of 120 °C, 1 MPa, 2.5 h catalyzed by 2 mol% DBU‐derived bromide ionic liquid, with the conversion of PO and the selectivity of propylene carbonate (PC) reaching 99% and 99%, respectively. Under the optimum reaction conditions, the ionic liquid system could be reused at least five times without decrease in selectivity and conversion. NMR spectroscopy and DFT calculations were used to reveal the hydrogen‐bond interaction between ionic liquids and reagent, based on which the reaction mechanism was proposed.  相似文献   

10.
《化学:亚洲杂志》2017,12(17):2271-2277
Development of inexpensive, easily prepared, non‐toxic, and efficient catalysts for the cycloaddition of CO2 with epoxides to synthesize five‐membered cyclic carbonates is a very attractive topic in the field of CO2 transformation. In this work, we conducted the first work on the cycloaddition of CO2 with epoxides to produce cyclic carbonates catalyzed by a binary catalyst system consisting of KI and boron phosphate (BPO4), which are both inexpensive and non‐toxic, and various corresponding cyclic carbonates could be produced with high yields (93–99 %) at 110 °C with a CO2 pressure of 4 MPa under solvent‐free conditions. In the BPO4/KI catalyst system, BPO4, a Brønsted and Lewis acid hybrid, played the role of activating the epoxy ring through the formation of hydrogen bonds with Brønsted acidic sites and the interaction with Lewis acidic sites simultaneously, and thus enhanced the activity of KI for the cycloaddition of CO2 with epoxides significantly. Additionally, the activity of the BPO4/KI catalyst system showed no noticeable decrease after being reused five times, indicating that the BPO4 was stable under the reaction conditions.  相似文献   

11.
Catalytic hydrogenation of cyclic carbonates to diols and methanol was achieved using a molecular catalyst based on earth‐abundant manganese. The complex [Mn(CO)2(Br)[HN(C2H4PiPr2)2] 1 comprising commercially available MACHO ligand is an effective pre‐catalyst operating under relatively mild conditions (T=120 °C, p(H2)=30–60 bar). Upon activation with NaOtBu, the formation of coordinatively unsaturated complex [Mn(CO)2[N(C2H4PiPr2)2)] 5 was spectroscopically verified, which confirmed a kinetically competent intermediate. With the pre‐activated complex, turnover numbers up to 620 and 400 were achieved for the formation of the diol and methanol, respectively. Stoichiometric reactions under catalytically relevant conditions provide insight into the stepwise reduction form the CO2 level in carbonates to methanol as final product.  相似文献   

12.
均相铬系催化剂的合成与催化α-烯烃聚合的进展   总被引:1,自引:0,他引:1  
张浩  黄吉玲  钱延龙 《有机化学》2002,22(12):981-989
铬系多相催化剂已广泛应用于工业聚乙烯的生产中。近年来,探明多相铬催化 剂的本质,并进一步开发新一代铬系均相催化剂成为人们追求的热点。综述了近年 来有关均相铬催化剂的合成与催化α-烯烃的报道。  相似文献   

13.
A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.  相似文献   

14.
The efficient and highly selective formation of a wide range of (hetero)cyclic cis‐diol scaffolds using aminotriphenolate‐based metal catalysts is reported. The key intermediates are cyclic carbonates, which are obtained in high yield and with high levels of diastereo‐ and chemoselectivity from the parent oxirane precursors and carbon dioxide. Deprotection of the carbonate structures affords synthetically useful cis‐diol scaffolds with different ring sizes that incorporate various functional groups. This atom‐efficient method allows the simple construction of diol synthons using inexpensive and accessible precursors and green metal catalysts and showcases the use of CO2 as a temporary protecting group.  相似文献   

15.
Two novel asymmetric salen ligands H2L1 [N‐phenyl‐N‐(2‐hydroxy‐5‐methylphenyl)‐N′‐(2‐hydroxy‐3‐meth‐ oxylphenyl)‐o‐phenyldiamine] and H2L2 [N‐phenyl‐N‐(2‐hydroxy‐5‐chlorophenyl)‐N′‐(2‐hydroxy‐3‐methoxyl‐ phenyl)‐o‐phenyldiamine] and their metal complexes MLn (M=Zn, Co, Ni, Cu; n=1, 2) have been prepared and characterized by elemental analyses, 1H NMR, ESI‐MS, FT‐IR and UV‐Vis spectra. In particular, the complex ZnL1, the binuclear monosalphen complex, was synthesized and studied in detail using 1H NMR and ESI‐MS techniques. For other metal complexes under the same reaction conditions, only mononuclear complexes were obtained. The results are relevant to both the metal ions and the structure of ligands.  相似文献   

16.
Hyperbranched polyacetals (HBPAs) bearing cyclic carbonate (CC) terminals were synthesized from protocatechuric aldehydes bearing bifunctional trimethylolpropane (TMP) or glycerol (Gly) structures and then utilized to design polymer electrolytes and networked polymer materials. Since TMP‐based cyclic acetals (CAs) are thermodynamically more stable than Gly‐derived CSs, the copolymerization of these monomers favors to form HBPAs comprising TMP‐based acetal stems and Gly terminals. Consequently, HBPAs composed of larger amounts of TMP or Gly terminals were separately synthesized by changing monomer feed ratios. Their diol terminals react efficiently with diphenyl carbonate to give HBPAs bearing 5‐ or 6‐membered CC (5‐CC or 6‐CC) terminals. HBPAs bearing 5‐CC terminals were mixed homogeneously with lithium bis(trifluoromethanesulfonyl)imide to form uniform films showing lithium ion conductivity ranging from 8.2 × 10?9 to 2.1 × 10?3 S cm?1 at 23–80 °C, whereas networked polycarbonate and polyhydroxyurethane films were successfully fabricated using HBPAs having CC terminals. These results apparently indicate that HBPAs having CC terminals are useful scaffolds to design functional polymer materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2295–2303  相似文献   

17.
The challenging metal-catalyzed asymmetric synthesis of highly functional quaternary carbon centers using decarboxylative C(sp3)−C(sp3) bond formation reactions is reported. The key substrate, a vinyl cyclic carbonate, is activated to provide concomitantly both the requisite nucleophile (by formal umpolung) and electrophile reaction partner preceding the asymmetric cross-coupling process. A wide screening of reaction conditions, additives and catalyst precursors afforded a protocol that gave access to a series of compounds featuring densely functionalized, elusive quaternary carbon stereocenters in appreciable yield and with enantiomeric ratios (er's) of up to 90 : 10.  相似文献   

18.
Complexes of formula [(H2N2O2)TiCl2] and [(H2N2O2)Ti(OiPr)2] (H2N2O2H2 = HOPh’CH2NH(CH2)2NHCH2Ph’OH, where Ph’ = 2,4-(CMe2Ph)C6H2) were synthesized by the reaction of the salan ligand precursor H2N2O2H2 with TiCl4 and Ti(OiPr)4, respectively, in high yields. The dichlorido complex [(H2N2O2)TiCl2] revealed to be an efficient catalyst for the reduction of benzaldehyde in toluene. Full conversion was observed after 24 h at 55 °C in THF. The same catalyst also converted phenylacetaldehyde and hydrocinnamaldehyde into the corresponding alkanes quantitatively.  相似文献   

19.
During an investigation into the potential union of Lewis basic isothiourea organocatalysis and gold catalysis, the formation of gold-isothiourea complexes was observed. These novel gold complexes were formed in high yield and were found to be air- and moisture stable. A series of neutral and cationic chiral gold(I) and gold(III) complexes bearing enantiopure isothiourea ligands was therefore synthesized and fully characterized. The steric and electronic properties of the isothiourea ligands was assessed through calculation of their percent buried volume and the synthesis and analysis of novel iridium(I)-isothiourea carbonyl complexes. The novel gold(I)- and gold(III)-isothiourea complexes have been applied in preliminary catalytic and biological studies, and display promising preliminary levels of catalytic activity and potency towards cancerous cell lines and clinically relevant enzymes.  相似文献   

20.
The bimetallic aluminium(salen) complex [(Al(salen))2O] is known to catalyse the reaction between epoxides and heterocumulenes (carbon dioxide, carbon disulfide and isocyanates) leading to five‐membered ring heterocycles. Despite their apparent similarities, these three reactions have very different mechanistic features, and a kinetic study of oxazolidinone synthesis combined with previous kinetic work on cyclic carbonate and cyclic dithiocarbonate synthesis showed that all three reactions follow different rate equations. An NMR study of [Al(salen)]2O and phenylisocyanate provided evidence for an interaction between them, consistent with the rate equation data. A variable‐temperature kinetics study on all three reactions showed that cyclic carbonate synthesis had a lower enthalpy of activation and a more negative entropy of activation than the other two heterocycle syntheses. The kinetic study was extended to oxazolidinone synthesis catalysed by the monometallic complex Al(salen)Cl, and this reaction was found to have a much less negative entropy of activation than any reaction catalysed by [Al(salen)]2O, a result that can be explained by the partial dissociation of an oligomeric Al(salen)Cl complex. A mechanistic rationale for all of the results is presented in terms of [Al(salen)]2O being able to function as a Lewis acid and/or a Lewis base, depending upon the susceptibility of the heterocumulene to reaction with nucleophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号