首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This one‐pot, four‐component coupling approach (Suzuki–Miyaura coupling/C?H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene‐based organic dyes for dye‐sensitized solar cells (DSSCs). Seven thiophene‐based, organic dyes of various donor structures with/without the use of a 3,4‐ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one‐pot, 3‐step, 35–61 %). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short‐circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open‐circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n‐hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2–5.6 %).  相似文献   

2.
Dipolar metal‐free sensitizers (D‐π‐A; D=donor, π=conjugated bridge, A=acceptor) consisting of a dithiafulvalene (DTF) unit as the electron donor, a benzene, thiophene, or fluorene moiety as the conjugated spacer, and 2‐cyanoacrylic acid as the electron acceptor have been synthesized. Dimeric congeners of these dyes, (D‐π‐A)2, were also synthesized through iodine‐induced dimerization of an appropriate DTF‐containing segment. Dye‐sensitized solar cells (DSSCs) with the new dyes as the sensitizers have cell efficiencies that range from 2.11 to 5.24 %. In addition to better light harvesting, more effective suppression of the dark current than the D‐π‐A dyes is possible with the (D‐π‐A)2 dyes.  相似文献   

3.
BODIPY dyes have attracted considerable attention as potential photosensitizers in dye‐sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D‐π‐A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure‐property relationships of D‐π‐A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6‐modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure‐property relationships give valuable information and guidelines for designing new D‐π‐A BODIPY dyes for DSSCs.

  相似文献   


4.
A series of metal‐free organic dyes with electron‐rich (D) and electron‐deficient units (A) as π linkers have been studied theoretically by means of density functional theory (DFT) and time‐dependent DFT calculations to explore the effects of π spacers on the optical and electronic properties of triphenylamine dyes. The results show that Dye 1 with a structure of D‐A‐A‐A is superior to the typical C218 dye in various key aspects, including the maximum absorption (λmax=511 nm), the charge‐transfer characteristics (Dq/t is 5.49 Å/0.818 e?/4.41 Å), the driving force for charge‐carrier injection (ΔGinject=1.35 eV)/dye regeneration (ΔGregen=0.27 eV), and the lifetime of the first excited state (τ=3.1 ns). It is thus proposed to be a promising candidate in dye‐sensitized solar cell applications.  相似文献   

5.
A series of metal‐free benzotriazole‐based dipolar dyes have been developed as sensitizers for dye‐sensitized solar cells (DSSCs). Different heteroaromatic rings such as furan, thiophene, and selenophene, were used in combination with benzotriazole as the conjugated spacer group. Light harvesting, charge recombination, and electron injection of the cells fabricated are affected by the heteroaromatic ring used in the spacer. The DSSC with the thiophene‐containing dye has the highest conversion efficiency of 6.20 %, which reaches 85 % of the standard cell based on N719.  相似文献   

6.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   

7.
The knowledge of dye‐sensitized solar cells (DSCs) has expanded considerably in recent years. They are multiparameter and complex systems that work only if various parameters are tuned simultaneously. This makes it difficult to target to a single parameter to improve the efficiency. There is a wealth of knowledge concerning different DSC structures and characteristics. In this review, the present knowledge and recent achievements are surveyed with emphasis on the more promising cell materials and designs.  相似文献   

8.
9.
10.
Two donor–acceptor molecular tweezers incorporating the 10‐(1,3‐dithiol‐2‐ylidene)anthracene unit as donor group and two cyanoacrylic units as accepting/anchoring groups are reported as metal‐free sensitizers for dye‐sensitized solar cells. By changing the phenyl spacer with 3,4‐ethylenedioxythiophene (EDOT) units, the absorption spectrum of the sensitizer is red‐shifted with a corresponding increase in the molar absorptivity. Density functional calculations confirmed the intramolecular charge‐transfer nature of the lowest‐energy absorption bands. The new dyes are highly distorted from planarity and are bound to the TiO2 surface through the two anchoring groups in a unidentate binding form. A power‐conversion efficiency of 3.7 % was obtained with a volatile CH3CN‐based electrolyte, under air mass 1.5 global sunlight. Photovoltage decay transients and ATR‐FTIR measurements allowed us to understand the photovoltaic performance, as well as the surface binding, of these new sensitizers.  相似文献   

11.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye‐sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron‐deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO2 surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

12.
Benzimidazole‐branched bi‐anchoring organic dyes that contained triphenylamine/phenothiazine donors, 2‐cyanoacrylic acid acceptors, and various π linkers were synthesized and examined as sensitizers for dye‐sensitized solar cells. The structure–activity relationships in these dyes were systematically investigated by using absorption spectroscopy, cyclic voltammetry, and density functional theory calculations. The wavelength of the absorption peak was more‐heavily influenced by the nature of the π linker than by the nature of the donor. For a given donor, the absorption maximum (λmax) was red‐shifted on changing the π linker from phenyl to 2,2′‐bithiophene, whilst the dyes that contained triphenylamine units displayed higher molar extinction coefficients (?) than their analogous phenothiazine‐based triphenylamine dyes, which led to good light‐harvesting properties in the triphenylamine‐based dyes. Electrochemical data for the dyes indicated that the triphenylamine‐based dyes possessed relatively low‐lying HOMOs, which could be beneficial for suppressing back electron transfer from the conduction band of TiO2 to the oxidized dyes, owing to facile regeneration of the oxidized dye by the electrolyte. The best performance in the DSSCs was observed for a dye that possessed a triphenylamine donor and 2,2′‐bithiophene π linkers. Electron impedance spectroscopy (EIS) studies revealed that the use of triphenylamine as the donor and phenyl or 2,2′‐bithiophene as the π linkers was beneficial for disrupting the dark current and charge‐recombination kinetics, which led to a long electron lifetime of the injected electrons in the conduction band of TiO2.  相似文献   

13.
A series of new push–pull phenothiazine‐based dyes ( HL1 , HL2 , HL3 , HL4 ) featuring various π spacers (thiophene, 3‐hexylthiophene, 4‐hexyl‐2,2′‐bithiophene) and double acceptors/anchors have been synthesized, characterized, and used as sensitizers for dye‐sensitized solar cells (DSSCs). Among them, the best conversion efficiency (7.31 %) reaches approximately 99 % of the N719‐based (7.38 %) DSSCs fabricated and measured under similar conditions. The dyes with two anchors have more efficient interfacial charge generation and transport compared with their congeners with only single anchor. Incorporation of hexyl chains into the π‐conjugated spacer of these double‐anchoring dyes can efficiently suppress dye aggregation and reduce charge recombination.  相似文献   

14.
Dye‐sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO2, ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident‐solar‐light‐to‐electricity conversion efficiency and low cost of production. To develop high‐performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light‐harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch‐making molecular design of organic dyes for high photovoltaic performance and long‐term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.  相似文献   

15.
A series of zinc–phthalocyanine sensitizers ( PcS16 – 18 ) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption‐site structures on the solar‐cell performances in zinc–phthalocyanine based dye‐sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time‐resolved fluorescence spectroscopy. The zinc–phthalocyanine sensitizer PcS18 , possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6‐diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light‐harvesting dye on a TiO2 electrode under one simulated solar condition.  相似文献   

16.
All‐organic dyes have shown promising potential as an effective sensitizer in dye‐sensitized solar cells (DSSCs). The design concept of all‐organic dyes to improve light‐to‐electric‐energy conversion is discussed based on the absorption, electron injection, dye regeneration, and recombination. How the electron‐donor–acceptor‐type framework can provide better light harvesting through bandgap‐tuning and why proper arrangement of acceptor/anchoring groups within a conjugated dye frame is important in suppressing improper charge recombination in DSSCs are discussed. Separating the electron acceptor from the anchoring unit in the donor–acceptor‐type organic dye would be a promising strategy to reduce recombination and improve photocurrent generation.  相似文献   

17.
Two novel tris‐heteroleptic Ru–dipyrrinates were prepared and tested as sensitizers in the dye‐sensitized solar cell (DSSC). Under AM 1.5 sunlight, DSSCs employing these dyes achieved power conversion efficiencies (PCEs) of 3.4 and 2.2 %, substantially exceeding the value achieved previously with a bis‐heteroleptic dye (0.75 %). As shown by electrochemical measurements and DFT calculations, the improved PCEs stem from the synthetically tuned electronic structure, which affords more negative excited state redox potentials and favorable electron injection into the TiO2 conduction band. Electron injection was quantified by nanosecond transient absorption spectroscopy, which revealed that the highest injection yield is achieved with the dye that acts as the strongest photoreductant.  相似文献   

18.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

19.
The high performances of dye‐sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon‐to‐electron conversion efficiencies extends to the onset at the near‐infrared region due to strong internal charge‐transfer transition as well as the effect of electron‐deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their RuII counterparts. Detailed spectroscopic studies have revealed the dye structure–cell performance correlations, to allow future design of efficient light‐harvesting organic dyes.  相似文献   

20.
Two D–π‐A′–A regioisomers (A‐IDT‐D and D‐IDT‐A) featuring 4,4′‐di‐p‐tolyl‐4 H‐indeno[1,2‐b]‐thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine–cyanoacrylic acid acceptor (A′–A) have been successfully synthesized and characterized as efficient sensitizers for the dye‐sensitized solar cells (DSSCs). The different arrangements of the D and A′–A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A‐IDT‐D) or opposite (D‐IDT‐A) to the direction of intramolecular (donor‐to‐acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade‐off between the molar extinction coefficient (ε) and the S0→S1 transition energy. As a result, a superior ε value was observed for D‐IDT‐A, whereas a bathochromic shift in the absorption occurred in A‐IDT‐D. The larger ε value of D‐IDT‐A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D‐IDT‐A‐based DSSC, retaining approximately 95 % of the N719‐based DSSC efficiency. This work manifests the clear structure–property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号