首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reactions of anthraquinone‐2,6‐disulfonic acid disodium salt (Na2a‐2,6‐dad) with CuII, MnII, and ZnII with 1,10‐phenanthroline (phen) or 2,2′‐dipyridyl (bipy) under hydrothermal conditions formed two or three‐dimensional supramolecules of stoichiometries [Cu(a‐2,6‐dad)(phen)(H2O)3](H2O)4 ( 1 ), [Mn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 2 ), and [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ), which were synthesized and characterized. The arrangement around each metal atom is distorted octahedral. The ligands in all the compounds are engaged in intermolecular hydrogen bonding leading to the formation of hydrogen‐bonded networks, the compounds show novel π–π stacking interactions. Photoluminescence measurements indicate that the compound [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ) shows strong blue luminescence in the solid state at room temperature.  相似文献   

2.
Five new transition metal complexes [Cu(HL)2(H2O)2] ( 1 ), [Cu(HL)2(phen)] ( 2 ), [Cu(HL)2(H2O)]2(4,4′‐bipy) ( 3 ), [Zn(HL)2(H2O)2]·(4,4′‐bipy) ( 4 ), [Ag(HL)(4,4′‐bipy)]n ( 5 ), (H2L=5‐chloro‐1‐phenyl‐1H‐pyrazole‐3,4‐dicarboxylic acid, phen=1,10‐phenanthroline; 4,4′‐bipy=4,4′‐bipyridine) have been synthesized and characterized. Complexes 1 , 2 and 4 exhibit monomeric structures, 3 shows a dinuclear structure, 5 displays 1D chain structure, and all extend to 3D supramolecular network via rich hydrogen bonds. Complexes 1 , 2 , 3 , 5 comprise single helical chains, while complex 4 generates quadruple‐stranded helical chains. Furthermore, the antibacterial activities of the titled complexes against bacterial species, three Gram positive bacteria (Staphylococcus aureus, Bacillus subtilis and Candida albicans) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were studied and compared to the activities of free ligands by using the microdilution method.  相似文献   

3.
Slow diffusion reaction of 2,2′‐dithiodibenzoic acid (dtdb) with CuCl2 in the presence of N‐donor ligands results in the formation of different coordination polymers where both S–S and C–S scission and oxidation of S is observed. X‐ray diffraction analysis of [Cu(tdb)(phen)(H2O)]2 · 2H2O.2DMF] ( 1 ), [Cu(tdb)(py)2(H2O)]2 ( 3 ), and [Cu(tdb)(bipy)(H2O)]2 · 0.5H2O ( 4 ) (tdb = thiodibenzoic acid, phen = phenanthroline, py = pyridine, bipy = 2,2′‐bipyridine) show that the metal ions are coordinated to the carboxylate oxygen atoms of the in situ generated tdb ligand in a monodenate fashion. In [Cu(phen)(SO4)2(H2O)2]n ( 2 ) and [Cu(bipy)(SO4)2(H2O)2]n ( 5 ), the sulfur is oxidized to sulfate ions prior to coordination with the metal. Complex 1 has a dimeric structure with π–π interactions between the phen ligands, whereas 3 and 4 form 1D polymeric chains.  相似文献   

4.
Six coordination compounds constructed by two structurally related flexible nitrogen-containing polycarboxylate ligands 2,2′-(2,2′-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methylene)bis(azanediyl)dibenzoic acid (H2L1) and 5,5′-(2,2′-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methylene)bis(azanediyl)diisophthalic acid (H4L2) have been synthesized: [Ni(H2O)6]?·?L1?·?(C2H5OH)0.5?·?H2O (1), [Co(L1)(L3)]?·?CH3OH (2), [Ni(L1)(L3)]?·?CH3OH (3), [Zn(L1)(L3)]?·?CH3OH (4), [Cd(L1)(L3)]?·?CH3OH (5), and [Zn(L2)0.5(phen)]?·?C2H5OH (6), where L3?=?3,4?:?9,10?:?17,18?:?23,24-tetrabenzo-1,12,15,26-tetraaza-5,8,19,22-tetraoxacyclooctacosan and phen?=?1,10-phenanthroline. The crystal structures have been determined by single-crystal X-ray diffraction. Compound 1 displays a discrete structure, which is further linked by hydrogen bonds to form a 2-D supramolecular layer. Compounds 25 display similar structures. These compounds possess 1-D meso-chain structures linked by L1 and metals. The C–H?···?π interactions from neighboring chains extend the chains in different directions, giving a 3-D plywood network. Compound 6 possesses 2-D layers, which are further linked by hydrogen-bonding interactions to generate a 3-D supramolecular architecture.  相似文献   

5.
A series of transition metal (Zn, Cu, Mn) complexes with chelidamic acid (2,6-dicarboxy-4-hydroxypyridine, H3CAM) and 4,4′-bipyridine (bipy), [Zn2(bipy)Cl2] n (1), {[Zn2(HCAM)(H2CAM)2]?·?(bipy)?·?3.5H2O} n (2), [Mn3(HCAM)3(H2O)7]?·?(bipy)?·?3H2O (3), [Mn2(HCAM)2(bipy)?·?(H2O)2]?·?4H2O (4), [Cu2(HCAM)2(bipy)?·?(H2O)2]?·?4H2O (5), and Cu2(HCAM)2(bipy)?·?(H2O)2 (6), have been synthesized by hydrothermal or solution methods and characterized by single-crystal X-ray diffraction. The structural analyses reveal that 1 exhibits a zigzag chain of Zn(II), Cl?, and 4,4′-bipyridine. In 2, a 1-D polymeric [Zn2(HCAM)(H2CAM)2] n chain and a discrete 4,4′-bipyridine assemble into a 2-D supramolecular network via H-bonds. Complex 3 consists of asymmetric units of Mn3(HCAM)3(H2O)7 that are linked by hydrogen bonds to form a 2-D H-bonded network. Complexes 46 are isomorphous and possess discrete structures. The photoluminescent properties of 16 at room temperature were studied.  相似文献   

6.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

7.
Two copper‐containing compounds based on MoO42–, [Cu4(phen)42‐OH)23‐OH)2(H2O)2][MoO4]2 · 10H2O ( 1 ) and [Cu(phen)2Mo2O7(phen)] · 8H2O ( 2 ) (phen = 1,10‐phenanthroline), were hydrothermally synthesized. In the crystal lattices of 1 and 2 , discrete octameric water cycles and 2D layer water clusters were observed. The cyclic water octamer clusters exist stably in the channels constructed by [Cu4(phen)4(OH)4(H2O)2]2+ and MoO42– by hydrogen bonds in 1 at low temperature and 2D layer water clusters are formed by (H2O)16 units in 2 .  相似文献   

8.
Three cobalt(II) coordination polymers, [Co2(tatb)2(2,2′‐bipy)2 (H2O)2 · DMA · 2H2O] ( 1 ), [Co2(tatb)2(1,10‐phen)2(H2O)2 · 2H2O] ( 2 ) and [Co(tatb)(1,3‐dpp) · H2O] ( 3 ) (H3tatb = 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl; 1,10‐phen = 1,10‐phenanthroline; 1,3‐dpp = 1,3‐bis(pyridin‐4‐yl)propane), were synthesized solvothermally and characterized by single‐crystal and powder X‐ray diffraction (PXRD), as well as IR spectroscopy. Complexes 1 and 2 exhibit 1D double‐chain structures, which further connect into interesting 3D networks by hydrogen bond and strong π–π interactions. Complex 3 possesses 2D 44‐sql topology, which is packed parallel in an AA fashion. Moreover, thermal stability properties and photoluminescence properties of 1 , 2 and 3 were also investigated.  相似文献   

9.
Four new metal‐organic frameworks [Cu2(2,2′‐bipy)2(ox)(H2O)2]·(H2bptc) ( 1 ), [Cu(bptc)0.5(phen)(H2O)]·H2O ( 2 ), Co2(bptc)(bmb)1.5 ( 3 ) and [Cd2(bptc) (bmb)]·3H2O ( 4 ) (H4bptc = 3,3′,4,4′‐biphenyltetracarboxylic acid, ox = oxalate, phen = 1,10‐phenanthroline, 2,2′‐bipy = 2,2′‐bipyridine and bmb = 4,4′‐bis((1H‐imidazol‐1‐yl)methyl)biphenyl), were obtained by reactions of the corresponding metal salts with H4bptc and N‐containing auxiliary ligands and their structures were determined by single‐crystal X‐ray diffraction. The results reveal that 1 has a 0‐D structure consisting of discrete ionic entities, while 2 features a 1‐D ladder structure. Additionally, there exist π‐π stacking and intermolecular hydrogen‐bonding interactions in 1 and 2 , respectively, forming 3‐D supramolecular structures. In 3 ‐ 4 , undulating 2‐D metal‐bptc layer structures are formed with two different coordination modes of bptc carboxylate groups, respectively, which are further extended by bmb into 3‐D structures. Magnetic properties of 1 and 3 have been studied. The photoluminescence property of 4 has also been investigated. Moreover, nonlinear optical measurements showed that 4 displayed a second‐harmonic‐generation (SHG) response of 0.7 times of that for urea.  相似文献   

10.
Two new Mn(II) complexes, [Mn(C6H5COO)(H2O)(phen)2](ClO4)(CH3OH) ( 1 ) and [Mn2(μ‐C6H5COO)2(bipy)4]?2(ClO4) ( 2 ) (phen = 1,10‐phenanthroline; bipy = 2,2′‐bipyridine), were synthesized and characterized using UV–visible and infrared spectroscopies and single‐crystal X‐ray diffraction analyses. Complexes 1 and 2 have six‐coordinate octahedral geometry around the Mn(II) centre. Complex 1 is a monomer and consists of a deprotonated monodentate benzoate ligand together with two neutral bidentate amine ligands (phen) and a water molecule. Complex 2 has a dinuclear structure in which two Mn(II) ions share two carboxylate groups, adopting a two‐atom bridging mode, and two chelated bipy ligands. Both complexes catalyse the oxidation of alcohols and alkenes in a homogeneous catalytic system consisting of the Mn(II) complex and tert‐butyl hydroperoxide (TBHP) in acetonitrile. The system yields good to quantitative conversions of various alkenes and alcohols, such as styrene, ethylbenzene and cyclohexene to their corresponding ketones, and primary alcohols and 1‐octanol, 1‐heptanol, cyclohexanol, benzyl alcohols and cinnamyl alcohol to their corresponding aldehydes and carboxylic acids. Complexes 1 and 2 exhibit very high activity in the oxidation of cyclohexene to cyclohexanone (ca 80% selectivity) as the main product (ca 94% conversion in 1 h) and of cinnamyl alcohol to cinnamaldehyde (ca 64% selectivity) as the main product (ca 100% conversion in 0.5 h) with TBHP at 70°C in acetonitrile. In addition, optimum reaction conditions were also determined for benzyl alcohol with complexes 1 and 2 and TBHP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Assimilation of open metal sites (OMSs) and free functional organic sites (FOSs) with a framework strut has opened up a new route for the fabrication of novel metal–organic materials, thereby providing a unique opportunity to explore their multiple functionalities. A new metal–organic framework (MOF), {[Cu(ina)2(H2O)][Cu(ina)2(bipy)]?2 H2O}n ( 1 ) (ina=isonicotinate, bipy=4,4′‐bipyridine), has been synthesized and characterized. Complex 1 is crystallized in the orthorhombic noncentrosymmetric space group Aba2 and consists of two different 2D coordination polymers, [Cu(ina)2(H2O)]n and [Cu(ina)2(bipy)]n, with entrapped solvent water molecules. Hydrogen‐bonding interactions assemble these two different 2D coordination layers in a single‐crystal structure with interdigitation of pendant 4,4′‐bipy from one layer into the groove of another. Upon removal of guest molecules, 1 undergoes a structural transformation in single‐crystal‐to‐single‐crystal fashion with expansion of the effective void space. Each metal center is five‐coordinated and thus can potentially behave as an OMS, and the free pyridyl groups of pendant 4,4′‐bipy moieties and free ? C?O groups can act as free FOSs. Thus, owing to presence of both OMSs and free FOSs, the framework exhibits multifunctional properties. Owing to the presence of OMSs, the framework can act as a Lewis acid catalyst as well as a small‐molecule sensor material, and in a similar way, owing to the presence of free FOSs, it performs as a Lewis base catalyst and a cation sensor material. Furthermore, owing to noncentrosymmetry with large polarity along a particular direction, it shows strong second‐harmonic generation/nonlinear optical (SHG‐NLO) activity.  相似文献   

12.
Hydrolysis of [M4(hfac)4(MeO)4(MeOH)4] (М = Сo, Ni and hfac is hexafluoroacetylaceton ate) is a convenient way of obtaining polynuclear complexes [Ni7(hfac)6(OH)8(H2O)6]?2H2O, [Co12(hfac)10(OH)14(H2O)8]?2H2O?2MePh, [Co12(hfac)10(OH)14(H2O)4(Me2CO)4]?3PhMe, and [Co12(hfac)10(OH)14(H2O)6(Me2CO)2]?2H2O?2Me2CO, whose structures were confirmed by X-ray analysis.  相似文献   

13.
Two new CoII coordination polymers [Co4(tbip)4(bipy)4(H2O)4] ( 1 ) and [Co(tbip)(phen)(H2O)] · H2O ( 2 ) (H2tbip = 5‐tert‐butyl isophthalic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 is a tbip‐bridged tetranuclear cobalt(II) complex, which is further linked by hydrogen bonds to form a supramolecular network. Compound 2 shows a tbip‐bridged linear chain structure, which is extended by hydrogen bonds to generate a double chain. Magnetic measurements show that there are weak ferromagnetic interactions between the adjacent CoII ions in 1 .  相似文献   

14.
Four lanthanide supramolecular coordination compounds, [Eu(gly)2(phen)2(H2O)2](ClO4)3(phen)4 · H2O ( 1 ), [Eu2(APA)6(phen)2](ClO4)6(phen)4 · 3H2O ( 2 ), [Tb2(ABA)4(phen)4](ClO4)6(phen)4 ( 3 ), and [Eu2(AHA)4(phen)4](ClO4)6(phen)2 · 2H2O · 2C2H5OH ( 4 ) (gly = glycine, APA = 3‐aminopropionic acid, ABA = 4‐aminobutanoic acid, AHA = 6‐aminohexanoic acid, phen = 1, 10‐phenanthroline), were synthesized and characterized by single crystal X‐ray diffraction. Compound 1 has a 2‐D supramolecular layered structure of mononuclear coordination cations and free phen molecules connected via hydrogen bonding and π‐π stacking interactions. 2 forms a 3‐D supramolecular network by hydrogen bonding between binuclear coordination cations and free phen molecules, between coordination cations and lattice water molecules, and π‐π stacking interactions between free phen molecules. Compounds 3 and 4 form 2‐D supramolecular structures with π‐π stacking between coordinating phen molecules, and between free phen molecules hydrogen‐bonded to the binuclear coordination cations. The high‐resolution emission spectra show only one Eu3+ ion site in the title complexes. The aqueous solutions of the title complexes are all photochromic with the color of the solution changing from yellow to green when irradiated by mercury lamp. During the decoloration process, they return to yellow color.  相似文献   

15.
Using the principle of crystal engineering, four novel metal-organic coordination polymers, {[Cd1(nic)2(H2O)]2[Cd2(nic)2(H2O)2]}n (1), [Cd2(fma)2(phen)2]n (2), [Cd(fma)(bipy)(H2O)]n (3) and [Zn(mal)(bipy)·3H2O]n (4) (nic=nicotinate, fma=fumarate, mal=malate, phen=phenanthroline, bipy=2,2′-bipyridine) have been synthesized by hydrothermal reaction of M(CH3COO)2·2H2O (M=Zn, Cd) with nicotinic acid, fumaric acid and cooperative L (L=phen, bipy), respectively. X-ray analysis reveals that complex 1 possesses an unprecedented two-dimensional topology structure constructed from three-ply-like layers, complex 2 is an infinite 2D undulating network, complex 3 is a 1D zigzag chain and complex 4 belongs to a 1D chain. The results indicate a transformation of fumarate into malate during the course of hydrothermal treatment of complex 4. The photophysical properties have been investigated with luminescent excitation and emission spectra.  相似文献   

16.
Four novel mixed‐ligand complexes were obtained from the reaction of maleic acid, diimine chelating ligands and Cd(OH)2 or CdO in a mixed solvent of water and methanol. The complexes were characterized by IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. The results show that all the four complexes are coordination polymers. [Cd(phen)(H2O)(male)]n · 2nH2O ( 1 ) and [Cd(bipy)(H2O)(male)]n · 2nH2O ( 2 ) (male = maleate; phen = 1, 10‐phenanthroline, bipy = 2, 2′‐bipyridine) are isomorphic, and the asymmetric unit is constructed by one CdII atom, a maleate group, a diimine ligand and two crystal water molecules. Each maleate group links two CdII atoms in a bis(bidentate) chelating mode, resulting in a 1D helical chain. Within [Cd(phen)(H2O)2(male)]n · 2nH2O ( 3 ), the maleate group bridges two CdII atoms in a bis(monodentate) chelating mode into a 1D helical chain along the [100] direction. The helical chain is decorated by phen groups alternatively at the two sides, and each phen plane of one chain is inserted in the void space between two adjacent phen ligands from an adjacent chain, resulting in a double zipper‐like chain. The asymmetric unit of [Cd2(phen)2(male)2]n ( 4 ) contains a CdII cation, one phen molecule, and a maleate group, and one bridging maleate group links three CdII atoms resulting in a 2D layer extending in [011] plane. The 2D networks are constructed by four kinds of rings formed by the central metal atom and maleate dianion. The thermostabilities of the four complexes were investigated.  相似文献   

17.
The reaction of Keggin‐type polyoxometalate (POM) units, transition‐metal (TM) ions, and a rigid bis(imidazole) ligand (1,4‐bis(1‐imidazolyl)benzene (bimb)) in a hydrothermal environment led to the isolation of four new POM‐based metal–organic networks, [H2L][CuL][SiW12O40]?2 H2O ( 1 ), [H2L]2[Co(H2O)3L][SiW11CoO39]?6 H2O ( 2 ), KH[CuL]2[SiW11CoO39(H2O)]?2 H2O ( 3 ), and [CuL]4[GeW12O40]?H2O ( 4 ; L=bimb). All four compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Compounds 1 and 3 are new 3D networks with 1D channels. Compounds 2 and 4 contain 2D networks, which further stack into 3D supramolecular networks. The contributions of pH value, the negative charge of the POM, and the TM coordination modes to the construction of 3D networks were elucidated by comparing the synthetic conditions and structures of compounds 1 – 4 . The photocatalytic properties of compounds 1 – 4 were investigated using methylene blue (MB) degradation under UV light. All compounds showed good catalytic activity and structural stability. The possible catalytic mechanism was discussed on the basis of active‐species trapping experiments. The different photocatalytic activities of compounds 1 – 4 were explained by comparison of the band gaps of different POM species and different packing modes of POM units in these hybrid compounds.  相似文献   

18.
{[Pb(tsgluo)]?·?H2O} n (1), [Pb2(tsgluo)2(phen)2] (2), and [Pb2(tsgluo)2(bipy)2] (3) (H2tsgluo?=?N-p-tolylsulfonyl-L-glutamate, phen?=?1,10-phenanthroline, bipy?=?2,2′-pyridine) have been synthesized in the absence or presence of phen or 2,2′-bipy and structurally characterized by elemental analysis, IR, and X-ray crystallography. Single-crystal X-ray analyses reveal that tsgluo exhibits two coordination modes to link lead ions. Complex 1 gives a 2-D layer structure while 2 and 3 exhibit monomolecular structures; 3 is further connected into a double-chain structure by hydrogen bonds. Phen and 2,2′-bipy are very important for the crystal structure. Fluorescence of the compounds is also discussed.  相似文献   

19.
Substitution reactions take place following the photonic excitation of aqueous K4M(CN)8 (where M = Mo or W) in the presence of 1,10-phenanthroline and 2,2-?bipyridyl. Changes in absorbance with time show that the overall reaction is dependent on photochemical activation of potassium octacyanomolybdate(IV) and -tungstate(IV). The species [K2Mo(CN)4(OH)2(phen)], [K2W(CN)4(OH)2(phen)], [K2Mo(CN)4(OH)2(bipy)] and [K2W(CN)4(OH)2(bipy)] exist in solution. The final photosubstitution products [Mo(OH)3(CN)(phen)2] · 2H2O], [Mo(OH)3(CN)(bipy)2] · 3H2O, [W(OH)3(CN)(phen)2] · 2H2O and [W(OH)3(CN)(bipy)2] · H2O have been isolated in the solid state. Their IR spectra have been discussed. The quantum yield of the photosubstitution reactions has been determined and its variation with change of concentration of the complex as well as the H+ ion concentration has been studied.  相似文献   

20.
Single‐crystal X‐ray diffraction measurements have been carried out on [Nd(dmf)4(H2O)3(μ‐CN)Fe(CN)5]?H2O ( 1 ; dmf=dimethylformamide), [Nd(dmf)4(H2O)3(μ‐CN)Co(CN)5]?H2O ( 2 ), [La(dmf)4(H2O)3(μ‐CN)Fe(CN)5]?H2O ( 3 ), [Gd(dmf)4(H2O)3(μ‐CN)Fe(CN)5]?H2O ( 4 ), and [Y(dmf)4(H2O)3(μ‐CN)Fe(CN)5]?H2O ( 5 ), at 15(2) K with and without UV illumination of the crystals. Significant changes in unit‐cell parameters were observed for all the iron‐containing complexes, whereas 2 showed no response to UV illumination. Photoexcited crystal structures have been determined for 1 , 3 , and 4 based on refinements of two‐conformer models, and excited‐state occupancies of 78.6(1), 84(6), and 86.6(7) % were reached, respectively. Significant bond‐length changes were observed for the Fe–ligand bonds (up to 0.19 Å), the cyano bonds (up to 0.09 Å), and the lanthanide–ligand bonds (up to 0.10 Å). Ab initio theoretical calculations were carried out for the experimental ground‐state geometry of 1 to understand the electronic structure changes upon UV illumination. The calculations suggest that UV illumination gives a charge transfer from the cyano groups on the iron atom to the lanthanide ion moiety, {Nd(dmf)4(H2O)3}, with a distance of approximately 6 Å from the iron atom. The charge transfer is accompanied by a reorganization of the spin state on the {Fe(CN)6} complex, and a change in geometry that produces a metastable charge‐transfer state with an increased number of unpaired electrons, thus accounting for the observed photomagnetic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号