首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the 2‐(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4‐R‐C6H4)2BX (R=H, X=Br; R=CH3, X=Cl; R=CF3, X=Cl) afforded the NHC‐stabilized borenium cations 10 a – c . Cyclic voltammetry revealed a linear correlation between the Hammett parameter σ p of the para substituent and the half‐wave potential. Chemical reduction with decamethylcobaltocene, [(C5Me5)2Co], furnished the corresponding radicals 11 a – c ; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a – c , with large hyperfine coupling constants to the boron isotopes 11B and 10B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR2) revealed for 11 a – c a spin density ratio (BR2/NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X‐ray diffraction analysis.  相似文献   

2.
N‐Heterocyclic carbene catalyzed radical reactions are challenging and underdeveloped. In a recent study, Ohmiya, Nagao and co‐workers found that aldehyde carbonyl carbon centers can be coupled with alkyl radicals under NHC catalysis. An elegant aspect of this study is the use of a redox‐active carboxylic ester that behaves as an single‐electron oxidant to convert the Breslow intermediate into a radical adduct and concurrently release an alkyl radical intermediate as a reaction partner.  相似文献   

3.
The combination of light activation and N‐heterocyclic carbene (NHC) organocatalysis has enabled the use of acid fluorides as substrates in a UVA‐light‐mediated photochemical transformation previously observed only with aromatic aldehydes and ketones. Stoichiometric studies and TD‐DFT calculations support a mechanism involving the photoactivation of an ortho‐toluoyl azolium intermediate, which exhibits “ketone‐like” photochemical reactivity under UVA irradiation. Using this photo‐NHC catalysis approach, a novel photoenolization/Diels–Alder (PEDA) process was developed that leads to diverse isochroman‐1‐one derivatives.  相似文献   

4.
One‐ and two‐electron oxidation of a digallene stabilized by an N‐heterocyclic carbene afforded the first stable gallium‐based radical cation and dication salts, respectively. Structural analysis and theoretical calculations reveal that the oxidation occurs at the Ga=Ga double bond, leading to removal of π electrons of the double bond and a decrease of the bond order. The spin density of the radical cation mainly locates at the two gallium centers as demonstrated by EPR spectroscopy and theoretical calculations. Moreover, the reactivity of the radical cation salt toward nBu3SnH and cyclo‐S8 was studied; a digallium–hydride cation salt containing a Ga?Ga single bond and a gallium sulfide cluster bearing an unprecedented ladder‐like Ga4S4 core structure were obtained, respectively.  相似文献   

5.
An umpolung 1,4‐addition of aryl iodides to enals promoted by cooperative (terpy)Pd/NHC catalysis was developed that generates various bioactive β,β‐diaryl propanoate derivatives. This system is not only the first reported palladium‐catalyzed arylation of NHC‐bound homoenolates but also expands the scope of NHC‐induced umpolung transformations. A diverse array of functional groups such as esters, nitriles, alcohols, and heterocycles are tolerated under the mild conditions. This method also circumvents the use of moisture‐sensitive organometallic reagents.  相似文献   

6.
We report a new class of stable mesoionic N‐heterocyclic olefins, featuring a highly polarized (strongly ylidic) double bond. The ground‐state structure cannot be described through an uncharged mesomeric Lewis‐structure, thereby structurally distinguishing them from traditional N‐heterocyclic olefins (NHOs). mNHOs can easily be obtained through deprotonation of the corresponding methylated N,N′‐diaryl‐1,2,3‐triazolium and N,N′‐diaryl‐imidazolium salts, respectively. In their reactivity, they represent strong σ‐donor ligands as shown by their coordination complexes of rhodium and boron. Their calculated proton affinities, their experimentally derived basicities (competition experiments), as well as donor abilities (Tolman electronic parameter; TEP) exceed the so far reported class of NHOs.  相似文献   

7.
Arynes were generated in situ from ortho‐silyl aryl triflates and fluoride ions in the presence of stable N‐heterocyclic carbene boranes (NHC? BH3). Spontaneous hydroboration ensued to provide stable B‐aryl‐substituted NHC‐boranes (NHC? BH2Ar). The reaction shows good scope in terms of both the NHC‐borane and aryne components and provides direct access to mono‐ and disubstituted NHC‐boranes. The formation of unusual ortho regioisomers in the hydroboration of arynes with an electron‐withdrawing group supports a hydroboration process with hydride‐transfer character.  相似文献   

8.
The dynamic kinetic resolution of 6‐hydroxypyranones with enals or alkynals through an asymmetric redox esterification is catalyzed by a chiral N‐heterocyclic carbene. The resulting esters are obtained in good to high yields and with high levels of enantio‐ and diastereocontrol. The reaction products are further derivatized to obtain functionalized sugar derivatives and natural products.  相似文献   

9.
The synthesis and characterization of original NHC ligands based on an imidazo[1,5‐a]pyridin‐3‐ylidene (IPy) scaffold functionalized with a flanking barbituric heterocycle is described as well as their use as tunable ligands for efficient gold‐catalyzed C?N, C?O, and C?C bond formations. High activity, regio‐, chemo‐, and stereoselectivities are obtained for hydroelementation and domino processes, underlining the excellent performance (TONs and TOFs) of these IPy‐based ligands in gold catalysis. The gold‐catalyzed domino reactions of 1,6‐enynes give rise to functionalized heterocycles in excellent isolated yields under mild conditions. The efficiency of the NHC gold 5Me complex is remarkable and mostly arises from a combination of steric protection and stabilization of the cationic AuI active species by ligand 1Me .  相似文献   

10.
Oxyallyl derivatives are typically elusive compounds. Even recently reported “stabilized” 1,3‐diaminooxyallyl species are still highly reactive and have short lifetimes at room temperature. Herein, we report the synthesis and preliminary study of mesoionic pyrimidine derivatives that feature 1,3‐bis(dimethylamino)oxyallyl patterns with an unprecedented level of stabilization. The latter are not only insensitive towards air and moisture, but they are also compatible with the formation of an ancillary stable N‐heterocyclic carbene moiety. As the oxyallyl pattern is proton‐responsive, it allows the reversible switching of the electronic properties of the carbene, as a ligand.  相似文献   

11.
Stable N‐heterocyclic carbene analogues of Thiele and Chichibabin hydrocarbons, [(IPr)(C6H4)(IPr)] and [(IPr)(C6H4)2(IPr)] ( 4 and 5 , respectively; IPr=C{N(2,6‐iPr2C6H3)}2CHCH), are reported. In a nickel‐catalyzed double carbenylation of 1,4‐Br2C6H4 and 4,4′‐Br2(C6H4)2 with IPr ( 1 ), [(IPr)(C6H4)(IPr)](Br)2 ( 2 ) and [(IPr)(C6H4)2(IPr)](Br)2 ( 3 ) were generated, which respectively afforded 4 and 5 as crystalline solids upon reduction with KC8. Experimental and computational studies support the semiquinoidal nature of 5 with a small singlet?triplet energy gap ΔES?T of 10.7 kcal mol?1, whereas 4 features more quinoidal character with a rather large ΔES?T of 25.6 kcal mol?1. In view of the low ΔES?T, 4 and 5 may be described as biradicaloids. Moreover, 5 has considerable (41 %) diradical character.  相似文献   

12.
A small library of triazolylidene‐boranes that differ only in the nature of the aryl group on the external nitrogen atom was prepared. Their reactivity as hydrogen‐atom donors, as well as that of the corresponding N‐heterocyclic carbene (NHC)‐boryl radicals toward methyl acrylate and oxygen, was investigated by laser flash photolysis, molecular orbital calculations, and ESR spin‐trapping experiments, and benchmarked relative to the already known dimethyltriazolylidene‐borane. The new NHC‐boranes were also used as co‐initiators for the Type I photopolymerization of acrylates. This allowed a structure–reactivity relationship with regard to the substitution pattern of the NHC to be established and the role of electronic effects in the reactivity of NHC‐boryl radicals to be probed. Although their rate of addition to methyl acrylate depends on their electronegativity, the radicals are all nucleophilic and good initiators for photopolymerization reactions.  相似文献   

13.
We have developed I2‐ or N‐iodosuccinimide (NIS)‐mediated amidiniumation of N‐alkenyl formamidines for the syntheses of cyclic formamidinium salts, some of which could be directly used as N‐heterocyclic carbene (NHC) precursors. Treatment of iodine‐containing formamidinium salts with Al2O3 led to the formation of cyclic formamidinium salts with an unsaturated backbone. A rhodium(I) complex ligated by a representative NHC was prepared by the reaction of [Rh(cod)Cl]2 (cod=1,5‐cyclooctadiene) with the free carbene obtained in situ from deprotonation of the corresponding formamidinium salts. The NHCs prepared in situ can also react with S8 to afford the corresponding thiones.  相似文献   

14.
Hydroboration of internal alkynes with N‐heterocyclic carbene boranes (NHC‐boranes) occurs to provide stable NHC (E)‐alkenylboranes upon thermolysis in the presence of di‐tert‐butyl peroxide. The E isomer results from an unusual trans‐hydroboration, and the E/Z selectivity is typically high (90:10 or greater). Evidence suggests that this hydroboration occurs by a radical‐chain reaction involving addition of an NHC‐boryl radical to an alkyne to give a β‐NHC‐borylalkenyl radical. Ensuing hydrogen abstraction from the starting NHC‐borane provides the product and returns the starting NHC‐boryl radical. Experiments suggest that the observed trans‐selectivity results from kinetic control in the hydrogen‐transfer reaction.  相似文献   

15.
Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2]2 with 1,1′‐diphenyl‐3,3′‐methylenediimidazolium diiodide in non‐alcohol solvents, in the presence of base, led to the formation of bis‐carbene complex [Cp*Rh(bis‐NHC)I]I (bis‐NHC=1,1′‐diphenyl‐4,4′‐methylenediimidazoline‐5,5′‐diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C?N bond is observed, affording ether‐functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1′‐diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C?N bond and, based on additional experimental data, a SN2 mechanism for the reaction is tentatively proposed.  相似文献   

16.
The NHC–borane adduct (IBn)BH3 ( 1 ) (NHC= N‐heterocyclic carbene; IBn=1,3‐dibenzylimidazol‐2ylidene) reacts with [Ph3C][B(C6F5)4] through sequential hydride abstraction and dehydrogenative cationic borylation(s) to give singly or doubly ring closed NHC–borenium salts 2 and 3 . The planar doubly ring closed product [C3H2(NCH2C6H4)2B][B(C6F5)4] is resistant to quaternization at boron by Et2O coordination, but forms classical Lewis acid–base adducts with the stronger donors Ph3P, Et3PO, or 1,4‐diazabicyclo[2.2.2]octane (DABCO). Treatment of 3 with tBu3P selectively yields the unusual oligomeric borenium salt trans‐[(C3H2(NCH2C6H4)2B)2(C3H2(NCHC6H4)2B)][B(C6F5)4] ( 7 ).  相似文献   

17.
N‐Heterocyclic carbene‐catalyzed formation of β‐anionic intermediates from enones has been employed in the enantioselective synthesis of 2‐aryl propionates. The reaction was achievable using a homochiral 4‐MeOC6H4 morpholinone catalyst allowing the first example of enantioselective catalysis by umpolung of α,β‐unsaturated ketones. The reaction is high yielding, and shows robustness with reasonable generality. A mechanism is proposed in which the enantiodetermining protonation is achieved using either hexafluoroisopropanol or the formed naphthol product.  相似文献   

18.
The stabilization of high oxidation state nanoparticles by N‐heterocyclic carbenes is reported. Such nanoparticles represent an important subset in the field of nanoparticles, with different and more challenging requirements for suitable ligands compared to elemental metal nanoparticles. N‐Heterocyclic carbene coated NaYF4:Yb,Tm upconversion nanoparticles were synthesized by a ligand‐exchange reaction from a well‐defined precursor. This new photoactive material was characterized in detail and employed in the activation of photoresponsive molecules by low‐intensity near‐infrared light (λ =980 nm).  相似文献   

19.
Herein we report the enantioselective (4+2) annulation of donor–acceptor cyclobutanes and unsaturated acyl fluorides using N‐heterocyclic carbene catalysis. The reaction allows a 3‐step synthesis of cyclohexyl β‐lactones (25 examples) in excellent chemical yield (most ≥90 %) and stereochemical integrity (all >20:1 d.r., most ≥97:3 e.r.). Mechanistic studies support ester enolate Claisen rearrangement, while derivatizations provide functionalized cyclohexenes and dihydroquinolinones.  相似文献   

20.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号