首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explore a new direction in representation theory which comes from holomorphic gerbes on complex tori. The analogue of the theta group of a holomorphic line bundle on a (compact) complex torus is developed for gerbes in place of line bundles. The theta group of symmetries of the gerbe has the structure of a Picard groupoid. We calculate it explicitly as a central extension of the group of symmetries of the gerbe by the Picard groupoid of the underlying complex torus. We discuss obstruction to equivariance and give an example of a group of symmetries of a gerbe with respect to which the gerbe cannot be equivariant. We calculate the obstructions to invariant gerbes for some group of translations of a torus to be equivariant. We survey various types of representations of the group of symmetries of a gerbe on the stack of sheaves of modules on the gerbe and the associated abelian category of sheaves on the gerbe (twisted sheaves).  相似文献   

2.
We explain how multiplicative bundle gerbes over a compact, connected and simple Lie group G lead to a certain fusion category of equivariant bundle gerbe modules given by pre-quantizable Hamiltonian LG-manifolds arising from Alekseev-Malkin-Meinrenken’s quasi-Hamiltonian G-spaces. The motivation comes from string theory namely, by generalising the notion of D-branes in G to allow subsets of G that are the image of a G-valued moment map we can define a ‘fusion of D-branes’ and a map to the Verlinde ring of the loop group of G which preserves the product structure. The idea is suggested by the theorem of Freed-Hopkins-Teleman. The case where G is not simply connected is studied carefully in terms of equivariant bundle gerbe modules for multiplicative bundle gerbes.  相似文献   

3.
We develop the theory of Chern-Simons bundle 2-gerbes and multiplicative bundle gerbes associated to any principal G-bundle with connection and a class in H4(BG, ℤ) for a compact semi-simple Lie group G. The Chern-Simons bundle 2-gerbe realises differential geometrically the Cheeger-Simons invariant. We apply these notions to refine the Dijkgraaf-Witten correspondence between three dimensional Chern-Simons functionals and Wess-Zumino-Witten models associated to the group G. We do this by introducing a lifting to the level of bundle gerbes of the natural map from H4(BG, ℤ) to H3(G, ℤ). The notion of a multiplicative bundle gerbe accounts geometrically for the subtleties in this correspondence for non-simply connected Lie groups. The implications for Wess-Zumino-Witten models are also discussed.The authors acknowledge the support of the Australian Research Council. ALC thanks MPI für Mathematik in Bonn and ESI in Vienna and BLW thanks CMA of Australian National University for their hospitality during part of the writing of this paper.  相似文献   

4.
Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.Acknowledgement We have benefited from discussions with L. Breen, D. Husemoller, A. Alekseev, L. Castellani, J. Kalkkinen, J. Mickelsson, R. Minasian, D. Stevenson and R. Stora.  相似文献   

5.
The Wess-Zumino term in two-dimensional conformal field theory is best understood as a surface holonomy of a bundle gerbe. We define additional structure for a bundle gerbe that allows to extend the notion of surface holonomy to unoriented surfaces. This provides a candidate for the Wess-Zumino term for WZW models on unoriented surfaces. Our ansatz reproduces some results known from the algebraic approach to WZW models. manche meinen lechts und rinks kann man nicht velwechsern werch ein illtum Ernst Jandl [Jan95] K.W. is supported with scholarships by the German Israeli Foundation (GIF) and by the Rudolf und Erika Koch–Stiftung.  相似文献   

6.
7.
In this paper, we construct the index bundle gerbe of a family of self-adjoint Dirac-type operators, refining a construction of Segal. In a special case, we construct a geometric bundle gerbe called the caloron bundle gerbe, which comes with a natural connection and curving, and show that it is isomorphic to the analytically constructed index bundle gerbe. We apply these constructions to certain moduli spaces associated to compact Riemann surfaces, constructing on these moduli spaces, natural bundle gerbes with connection and curving, whose 3-curvature represent Dixmier-Douady classes that are generators of the third de Rham cohomology groups of these moduli spaces.  相似文献   

8.
Topological T-duality is a transformation taking a gerbe on a principal torus bundle to a gerbe on a principal dual-torus bundle. We give a new geometric construction of T-dualization, which allows the duality to be extended in the following two directions. First, bundles of groups other than tori, even bundles of some nonabelian groups, can be dualized. Second, bundles whose duals are families of noncommutative groups (in the sense of noncommutative geometry) can be treated, though in this case the base space of the bundles is best viewed as a topological stack. Some methods developed for the construction may be of independent interest. These are a Pontryagin type duality that interchanges commutative principal bundles with gerbes, a nonabelian Takai type duality for groupoids, and the computation of certain equivariant Brauer groups. The research reported here was supported in part by National Science Foundation grants DMS-0703718 and DMS-0611653.  相似文献   

9.
 It was argued in [25, 5] that in the presence of a nontrivial B-field, D-brane charges in type IIB string theories are classified by twisted K-theory. In [4], it was proved that twisted K-theory is canonically isomorphic to bundle gerbe K-theory, whose elements are ordinary Hilbert bundles on a principal projective unitary bundle, with an action of the bundle gerbe determined by the principal projective unitary bundle. The principal projective unitary bundle is in turn determined by the twist. This paper studies in detail the Chern-Weil representative of the Chern character of bundle gerbe K-theory that was introduced in [4], extending the construction to the equivariant and the holomorphic cases. Included is a discussion of interesting examples. Received: 10 January 2002 / Accepted: 9 December 2002 Published online: 25 February 2003 RID="⋆" ID="⋆" The authors acknowledge the support of the Australian Research Council Communicated by R.H. Dijkgraaf  相似文献   

10.
Ernest Ma 《Pramana》1998,51(1-2):45-50
Given the particle content of the standard model without and with a right-handed neutrino, the requirement that all anomalies cancel singles out a set of possible global symmetries which can be gauged. I review this topic and propose a new gauge symmetryB — 3L T in the context of the minimal standard model consisting of the usual three families of quarks and leptons plus just onev R. The many interesting phenomenological consequences of this hypothesis are briefly discussed.  相似文献   

11.
A geometric model for the quantum nature of interaction fields is proposed. We utilize a trivial fibre bundle whose typical fibre has a multiconnectivity characterized by a discrete group Γ. By seeing Γ as a gauge group with global action on each fibre, we show that the corresponding field strength is non-zero only on the future part of the light cone whose vertex is at the interaction point. When the interaction is submitted to the symmetries of a Lie group G, we consider the gauge group G x Γ. The field strength of the gauge having this group includes a term expressing the quantization of the interaction field described by G. This geometric interpretation of quantization makes use of topological arguments similar to those applied to explain the Aharonov-Bohm effect. Two examples show how this interpretation applies to the cases of electromagnetic and gravitational fields.   相似文献   

12.
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.  相似文献   

13.
We elaborate on the construction of a prequantum 2-Hilbert space from a bundle gerbe over a 2-plectic manifold, providing the first steps in a programme of higher geometric quantisation of closed strings in flux compactifications and of M5-branes in C-fields. We review in detail the construction of the 2-category of bundle gerbes and introduce the higher geometrical structures necessary to turn their categories of sections into 2-Hilbert spaces. We work out several explicit examples of 2-Hilbert spaces in the context of closed strings and M5-branes on flat space. We also work out the prequantum 2-Hilbert space associated with an M-theory lift of closed strings described by an asymmetric cyclic orbifold of the \(\mathsf {S}\mathsf {U}(2)\) WZW model, providing an example of sections of a torsion gerbe on a curved background. We describe the dimensional reduction of M-theory to string theory in these settings as a map from 2-isomorphism classes of sections of bundle gerbes to sections of corresponding line bundles, which is compatible with the respective monoidal structures and module actions.  相似文献   

14.
15.
We study the occurrence of global gauge anomalies in the coset models of two-dimensional conformal field theory that are based on gauged WZW models. A complete classification of the non-anomalous theories for a wide family of gauged rigid adjoint or twisted-adjoint symmetries of WZW models is achieved with the help of Dynkin’s classification of Lie subalgebras of simple Lie algebras.  相似文献   

16.
The infinitesimal symmetries of a fully decomposed non-Abelian gerbe can be generated in terms of a nilpotent BRST operator, which is here constructed. The appearing fields find a natural interpretation in terms of the universal gerbe, a generalisation of the universal bundle. We comment on the construction of observables in the arising Topological Quantum Field Theory. It is also shown how the BRST operator and the trace part of a suitably truncated set of fields on the non-Abelian gerbe reduce directly to the coboundary operator and the pertinent cochains of the underlying ?ech–de Rham complex.  相似文献   

17.
18.
We give an account of the genesis of the gauge groups of the standard model plus gravity and their concomitant interaction terms ab initio from a consideration of the quantization of certain classical discrete symmetries. We indicate how the resulting symmetries may be gauged upon a semi-quantized non manifold-like model of spacetime. This model is briefly introduced and some of its pre- or quantum geometry is developed from first principles. The formalism leads to a view of gauge interaction that admits an apparently new form of symmetry breaking that accounts, among other things, for the chiral breaking of the weak interaction. (A sequel will give an account of a range of mechanisms to break other symmetries arising in the standard model, and will consider some of their experimental consequences.)  相似文献   

19.
《Nuclear Physics B》1988,302(1):65-80
We examine the low-energy limits of the one-particle irreducible one-loop amplitudes in the heterotic superstring for five gravitons, for three gravitons and two gauge bosons, and for one graviton and four gauge bosons. In agreement with general arguments, explicit calculation shows that there is a Wess-Zumino term in the low-energy effective action for D = 10 supergravity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号